scholarly journals Development, characterization and solubility enhancement of BCS class II drug phenytoin by solid phospholipid dispersion technique

2020 ◽  
Vol 11 (1) ◽  
pp. 403-410
Author(s):  
Veera Venkata Satyanarayana Reddy Karri ◽  
Sathish Ananthan ◽  
Lavanya Mude

The poor aqueous solubility acts as a core challenge in oral dosage form development for BCS class II drugs. Phenytoin is taking as a model drug; the present study adopted an innovative solid phospholipid nanoparticle (SPLN) line of attack, and it is parallelly equated with the industrialized methods (freeze-drying) which are used for the boosting of solubility and dissolution of Phenytoin. Phenytoin was articulated along with phospholipid and mannitol at a diverse ratio of phenytoin, PL, mannitol, in which 1:12:18 was the correct ratio for ideal preparation. Freeze-drying helps to prepare SPLNs in orbicular shape, which is amorphous in nature with ≤ 1µm diameter on average. While the amorphous matrix-like structure of solid phospholipid dispersion with larger particle size is obtained by freeze-drying technique. Formulating the formulation from this method improved the dissolution rate in a remarkable way. Tris buffer with pH 7.4acts as an apparent solubility dissolved concentration of phenytoin. The poor aqueous solubility acts as a core challenge in oral dosage form development for BCS class II drugs. The decrease in the particle size or cumulating the drug surface area is the widely used practices to proliferate the solubility. The target of the present work was improvisation in solubility, dissolution of a poorly water-soluble drug, and its release by using solid phospholipid nanoparticles. Phenytoin is taking as a model drug. The solid phospholipid nanoparticles were primed by freeze-drying technique along with phospholipid and mannitol in diverse drug to excipients ratios (1:1, 1:2w: w). These preparations were assessed for compatibility study using FTIR, solubility enhancement study by XRD, entrapment efficiency, surface morphology by SEM, and in-vitro release study. As per the results, there is no influence of the excipients on the drug used. The solubility was increased by folds compared to in house prepared formulation. 

Author(s):  
Amit Verma ◽  
Neetu Sachan ◽  
Anurag Verma

Karaya gum (KG) is one of the least soluble of the gums. It does not dissolve in water to give a clear solution but instead absorbs water rapidly to form viscous colloidal sols. Carboxymethylation of Karaya gum is expected to improve its aqueous solubility and gelling behavior. Another objective of the research is to evaluate the potential of carboxymethylated Karaya gum (CMKG) as drug release modulator (in acidic dissolution medium) when combined with HPMC K15M based polymeric matrices bearing Propranolol HCl. In the present study, KG was carboxymethylated using Williamson Ether synthesis. FTIR spectroscopy confirmed the formation of CMKG. The prepared CMKG was used in conjunction with HPMC K15M as a polymer matrix in the formulation capsule dosage form, using Propranolol HCl as model drug. The filled capsules were then coated with Gelucire 43/01 to convert them into hydrodynamically balanced (HBS) capsule dosage form. Dextrose & fructose were also added to the drug-polymer mix as osmogen to facilitate the drug release. The degree of substitution of CMKG was found to be 0.87. HBS capsule dosage forms remained buoyant on 0.1 HCl for up to 6 hr, the buoyancy was attributed to the Gelucire 43/01 coating around the capsule shell. From the experimentation it was observed that CMKG, when mixed with HPMC K15M at 1:3 ratios, extended the release of model drug from HBS capsule dosage forms in 0.1 HCl. At CMKG: HPMC K15M ratio 2:1, release of Propranolol Hydrochloride from hydrodynamically balanced (HBS) capsules revealed fast drug release in 0.1 HCl. From the observations it is evident that KG is amenable to carboxymethylation to form CMKG. It is also evident that it is advantageous to combine CMKG with HPMC K15M as release modulator to retard the release of Propranolol HCl in acidic dissolution medium.


2021 ◽  
Vol 10 (6) ◽  
pp. 3806-3812
Author(s):  
Pritam Singh

BCS class II is well-known for the drugs, having poor aqueous solubility and high permeability. Simvastatin is also categorized as BCS class II, suffering from poor aqueous solubility, affecting its bioavailability. In an attempt to resolve this problem, solid dispersions of simvastatin were prepared by spray-drying method. Solid dispersions of simvastatin with PVP K25 and aerosol in ratio (1:1:1 to 1:5:1) and without aerosil 200 (1:1 to 1:5) were prepared by spray drying method. The dissolution test showed the enhancement of dissolution as compared to the pure drug and nearly equal to marketed formulation “SIMVOTIN 20mg” in both types of formulation, but formulations with aerosil 200 showed faster drug release as compared to the simple formulations without aerosil. The formulation containing the 1:3:1 (simvastatin: PVP K25: Aerosil 200) showed the faster drug release as compared to other formulation that do not contain the Aerosil 200. Other characterization studies were also performed such as FTIR, differential scanning colorimetry and powdered X-ray crystallographic studies. These studies showed the increased amorphous nature of the drug in the formulation, which explain the enhanced dissolution rate of the drug for these formulations.


2021 ◽  
Vol 11 (2) ◽  
pp. 23-30
Author(s):  
Anil Kumar ◽  
Umesh K. Jain ◽  
Ajay Patel

Lipospheres offer a new approach to improve an aqueous solubility of BCS class-II drugs. Simvastatin is a third generation fibric acid derivative belonging to this class, employed clinically as a hypolipidemic agent to lessen the risk caused by atherosclerosis. An attempt was made to improve aqueous solubility of Simvastatin by aid of stearic acid and Paraffin oil. The factorial batches of the Simvastatin lipospheres were formulated by melt dispersion technique using 32 factorial design with variables X1- concentration of stearic acid and X2- concentration of paraffin oil and responses Y1 - % Drug Entrapment (% DE) and Y2 - % Drug Release (% DR). From the surface response graphs the optimized batch was formulated and evaluated for saturation solubility, in-vitro drug release studies. Significant improvement in the aqueous solubility of the drug in the Simvastatin lipospheres supports the applicability of lipospheres as a tool for improving aqueous solubility of the BCS class-II drugs. Keywords: Linospheres; Simvastatin; Drug release; Hyperlipidemic; Drug entrapment.


2022 ◽  
Vol 12 (1) ◽  
pp. 63-69
Author(s):  
Salam Shanta Taher ◽  
Khalid Kadhem Al-Kinani ◽  
Zahraa Mohsen Hammoudi ◽  
Mowafaq mohammed Ghareeb

2021 ◽  
Vol 14 (11) ◽  
pp. 1201
Author(s):  
Bharti Gupta ◽  
Varsha Mishra ◽  
Sankalp Gharat ◽  
Munira Momin ◽  
Abdelwahab Omri

One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Indira S Divya ◽  
Amrutha Surendran ◽  
Sunil SeethaLekshmi ◽  
Sunil Varughese

The anti-malarial drug quinine (QUN) has poor aqueous solubility and belongs to Biopharmaceutical Classification System (BCS) Class-II. We report 12 novel molecular salts of QUN with α,ω-aliphatic dicarboxylic acids, and...


2020 ◽  
Vol 10 ◽  
Author(s):  
Vijay Agrawal ◽  
Vipin Sharma ◽  
Pankaj Kumar Sharma

Background: Eplerenone (EPL) is a BCS class II drug, thus, having the poor water solubility. The poor water solubility of this drug leads to the poor dissolution and ultimately shows the poor bioavailability. To overcome this problem, the solid dispersion of EPL was prepared in this study. Methods: This was accomplished by using the solvent melt method as the solid dispersion technique. In this method Pluronic F-68 and F-127 was used as the carrier and different formulations were prepared using the varying in ratio of a drug and carrier (1:1, 1:2, 1:3, 1:4, 1:5). The mixture of drug solution and carrier were prepared at 70oC, using the digital magnetic stirrer. The resultant mixture was dried at 40oC in hot air oven and optimized EPL-solid dispersion was undergone for their characterization using drug content, drug entrapment efficiency (%) and drug loading content (%), Scanning Electron Microscopy (SEM), Infra-Red spectroscopy, Differential Scanning Calorimetery (DSC), stability study and in-vitro dissolution studies. Results: The result indicated that there was no interaction between EPL and Pluronics (Pluronic F-68 & F-127), and optimized formulation (P127-2) of EPL-solid dispersion have encapsulation efficiency > 95%. Experimental work also showed that optimized formulation has 31.7% of drug loading content which was greater than other existing solid dispersion having less than 30% of drug loading content. Out of different batches, the optimized batch exhibits the faster dissolution rate in comparison of other batches. It released the almost total amount of drug (98.96%) in 30 minutes. The stored ESM-solid dispersion also exhibited their remarkable stability and remains in solid state, when it was exposed to 25oC/60% relative humidity and room temperature (38ºC) for two months. Such stability was confirmed by DSC method. The DSC thermogram of optimized formulation exhibited a melting endotherm at onset temperature of 160oC, a peak temperature of 165oC and a heat of fusion of 25.68 J/gm. Simirly, DSC thermogram of physical mixture of bulk EPL/pluronic F-127 also exhibited the onset of temperature at 165oC, and a peak temperature at 171oC. Thus, result indicated that both sample showed the almost similar DSC pattern and no one sample alter their state after the treatment of temperature and humidity used in stability testing. SEM study was also performed in this research and result indicated that the particle size of optimized formulation was varied and having the irregular matrices due to porous nature of the carrier. Conclusion: Based on different findings it can be concluded that solvent melt method could be a potential method for preparing the solid dispersion of EPL like BCS class-II Drugs and will be able to solve the dissolution and solubilization related problem of poorly soluble drugs.


Sign in / Sign up

Export Citation Format

Share Document