scholarly journals Probiotic and Techno-Functional Traits of Lactobacillus pentosus DS2 Isolated from Naturally Fermented Plant Beverage

2020 ◽  
Vol 11 (4) ◽  
pp. 7417-7424
Author(s):  
Mehak Manzoor ◽  
Vikrant Sharma ◽  
Deepti Singh ◽  
Jagdip Singh Sohal ◽  
Gajender Kumar Aseri ◽  
...  

The research on the isolation of novel lactic acid bacteria (LAB) strains from different fermented plant beverages is receiving immense attention for their significant health benefits towards human health. The present study aimed to isolate and categorize various functional attributes of Lactobacillus pentosus DS2 isolated from fermented black carrot beverage. The isolated L.pentosus DS2 strain exhibited resistance to acid and higher salt concentrations. The isolated strain was identified by using 16S rRNA gene sequences. L.pentosus DS2 showed high survivability of about 6.75 to 7.02 log CFU/ml from pH (2-8) and at a different salt concentration (1-10%) log CFU/ml ranged from 7.92 to 6.41 log CFU/ml. According to the obtained results, auto-aggregation as well as cell surface hydrophobicity was about 16.2 ± 0.35 and 90 ± 0.21 % respectively, while co-aggregation value was 72.5 ± 2.12 and 82 ± 1.41% with Escherichia coli and Staphylococcus aureus respectively. The enzymatic screening was performed and estimated as 0.54 ± 0.01, 103 ± 1.41, and 80.5 ± 2.89 U/mL of amylase, protease, and phytase. Cholesterol removal by L. pentosus DS2 was 47.15 ± 0.41%. The adherence levels by L. pentosus DS2 to different cell lines such as Caco-2 and HT-29 ranged from 17.65 ± 0.25 to 19.79 ± 0.31% respectively. Antibiotic susceptibility pattern obtained showed a different degree of antibiotics sensitivity, such as resistance to ampicillin. Thus, the isolated L.pentosus DS2 has all the desired properties to be used as a potential probiotics strain.

Author(s):  
Kamni Rajput ◽  
Ramesh Chandra Dubey

In this paper, an investigation on lactic acid bacterial isolates from ethnic goat raw milk samples were examined for their probiotic potential and safety parameters. For this purpose, isolated bacterial cultures were screened based on certain parameters viz., sugar fermentation, tolerance to temperature, salt, low pH, bile salts, and phenol resistance. After that, these bacterial cultures were more estimated in vitro for auto-aggregation, cell surface hydrophobicity, response to simulated stomach duodenum channel, antibiotic resistance, and antimicrobial activity. Besides, probiotic traits show the absence of gelatinase and hemolytic activity supports its safety. The isolate G24 showed good viability at different pH, bile concentration, phenol resistance and response to simulated stomach duodenum passage but it did not show gelatinase and hemolytic activities. Isolate G24 was susceptible to amikacin, carbenicillin, kanamycin, ciprofloxacin, co-trimazine, nitrofurantoin, streptomycin, and tetracycline. Isolate G24 also exhibited antimicrobial action against five common pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogens, and Salmonella typhimurium. It displayed the maximum auto-aggregation, cell surface hydrophobicity to different hydrocarbons. Following molecular characterization the isolate G24 was identified as Enterococcus hirae with 16S rRNA gene sequencing and phylogeny. E. hirae G24 bears the excellent properties of probiotics.


2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Katarzyna Marchwińska ◽  
Daniela Gwiazdowska

AbstractAnimal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive.


Author(s):  
Y. Zeng ◽  
Y. Li ◽  
Q. P. Wu ◽  
J. M. Zhang ◽  
X. Q. Xie ◽  
...  

This study investigated the antipathogenic activity and probiotic potential of indigenous lactic acid bacteria (LAB) isolated from Chinese homemade pickles. In total, 27 samples were collected from different sites in China. Fifty-nine yielded pure colonies were identified by 16S rRNA gene sequencing as LAB and were initially evaluated for the antibacterial activity in vitro. Initial screening yielded Lactobacillus plantarum GS083, GS086, and GS090, which showed a broad-spectrum antibacterial activity against food-borne pathogens, especially multidrug-resistant pathogens. Meanwhile, organic acids were mainly responsible for the antimicrobial activity of the LAB strains, and the most abundant of these was lactic acid (19.32 ± 0.95 to 24.79 ± 0.40 g/l). Additionally, three L. plantarum strains demonstrated several basic probiotic characteristics including cell surface hydrophobicity, autoaggregation, and survival under gastrointestinal (GI) tract conditions. The safety of these isolates was also evaluated based on their antibiotic susceptibility, hemolytic risk, bile salt hydrolase activity, and existence of virulence or antibiotic resistance genes. All strains were safe at both the genomic and phenotypic levels. Therefore, L. plantarum GS083, GS086, and GS090 are fairly promising probiotic candidates and may be favorable for use as preservatives in the food industry.


Author(s):  
Al-Shimaa Ibrahim Ahmed ◽  
Gihan Mohamed El Moghazy ◽  
Tarek Ragab Elsayed ◽  
Hanan Abdel Latif Goda ◽  
Galal Mahmoud Khalafalla

Abstract Background The health-promoting effects along with global economic importance of consuming food products supplemented with probiotic microorganisms encouraged the researchers to discover new probiotics. Results Fourteen lactic acid bacterial isolates were identified as Enterococcus mediterraneensis, Lactobacillus fermentum, and Streptococcus lutetiensis by 16S rRNA gene sequencing, and in vitro characterized for their actual probiotic potential. All E. mediterraneensis isolates were resistant to clindamycin, whereas Lb. fermentum isolates were resistant to ampicillin, clindamycin, and vancomycin. The E. mediterraneensis and Lb. fermentum isolates displayed high overall digestive survival, ranged from 1.35 ± 0.06 to 32.73 ± 0.84% and from 2.01 ± 0.01 to 23.9 ± 1.85%, respectively. All isolates displayed cell surface hydrophobicity, ranged between 15.44 ± 6.72 and 39.79 ± 2.87%. The strongest auto-aggregation capability, higher than 40%, was observed for most E. mediterraneensis and Lb. fermentum isolates. The E. mediterraneensis isolates (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) exhibited the greatest co-aggregation with Salmonella typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Bacillus cereus. Fifty-seven and fourteen hundredth percent of E. mediterraneensis isolates could be considered bacteriocinogenic against E. coli O157:H7, B. cereus, and S. aureus. Conclusion This study is the first one to isolate Enterococcus mediterraneensis in Egypt and to characterize it as new species of probiotics globally. According to the results, E. mediterraneensis (L2, L12, and L15), Lb. fermentum (L8, L9, and L10), and Strep. lutetiensis (L14) are the most promising in vitro probiotic candidates.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Abd El-Latif Hesham ◽  
Asmaa M. M. Mawad ◽  
Yasser M. Mostafa ◽  
Ahmed Shoreit

Polycyclic aromatic hydrocarbons (PAHs) are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06) was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 asSphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genesalkB, alkB1, nahAc, C12O, andC23Osuggested that ASU-06 might possess genes for aliphatic and PAHs degradation, whilePAH-RHDαGPgene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3085 ◽  
Author(s):  
Mohd Adnan ◽  
Mitesh Patel ◽  
Sibte Hadi

BackgroundProbiotic microorganisms are gaining global importance because of their use in the preparation of a nutraceutical or in the treatment of infections. As per the health industry demand, there is an urgent need for exploring new indigenous probiotic strains with its specific origin due to variation in gut microflora, different food habits and specific host-microbial interactions. The main objective of the present study was to isolate and identify a novel probioticEnterococcusstrain from the gut ofCatla catlafish and evaluate its potentiality as a potent probiotic.MethodsThe whole study was designed with the isolation of novel lactic acid bacterial strain from the gut ofCatla catlafish with their biochemical and molecular identifications. The potentiality of the isolated strain as a potent probiotic was carried out according to the parameters described in FAD/WHO guidelines for the evaluation of probiotics in food.ResultsThe isolated strain was confirmed asEnterococcus hiraeF2 on the basis of various biochemical and 16s rRNA gene sequencing methods.Enterococcus hiraeF2 was able to survive under highly acidic and bile salt concentration with the ability for the production of lipase and Bsh enzyme. It was also able to survive under simulated gastrointestinal conditions with the inhibition ability of various pathogens. The antioxidant potentiality with the cell surface hydrophobicity and cell aggregation ability confirms its potentiality as a potent probiotic. All the results detail the potency ofEnterococcus hiraeF2 as a novel probiotic for a safer use.DiscussionThe isolation ofEnterococcus hiraewith probiotic potential from the gut of fish is a new approach and done for the first time. However, the whole study concluded that the isolated strain might be used as a novel probiotic in the food industry for the production of new probiotic products which imparts health benefits to the host.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Kridsada Unban ◽  
Wirunya Chaichana ◽  
Sasitorn Baipong ◽  
Aliyu Dantani Abdullahi ◽  
Apinun Kanpiengjai ◽  
...  

Miang, a traditional fermented tea from Northern Thailand, potentially hosts beneficial probiotic bacteria. A total of 133 isolates of lactic acid bacteria (LAB) isolated from Miang were evaluated for probiotic potential. Among them, 5 strains showed high tolerance to bile and acidic conditions and were selected for further evaluation. All selected strains showed inhibitory activity against human pathogens, including Bacillus cereus, Staphylococcus aureus, and Salmonella ser. Typhimurium. Nucleotide sequences analysis of the 16S rRNA gene revealed that 3 isolates were identified as Lactobacillus pentosus; the remaining were L. plantarum and Pediococcus pentosaceus, respectively. All 5 strains showed a high survival rate of more than 90% when exposed to simulated gastrointestinal conditions and were also susceptible to antibiotics such as erythromycin, tetracycline, and gentamycin, and resistant to vancomycin, streptomycin, and polymycin. In addition, the selected isolates exhibited different degrees of cell surface hydrophobicity (58.3–92.9%) and auto-aggregation (38.9–46.0%). The antioxidant activity reflected in DPPH scavenging activities of viable cells and their cell-free culture supernatants (CFCS) were also found in selected LAB isolates. Moreover, selected LAB isolates showed ability to grow on commercial prebiotics (GOS, FOS or XOS). The preliminary study of spray-drying using cyclodextrin as thermoprotectant suggested that all strains can be designed as a powdered formulation. L. pentosus A14-6 was the best strain, with high tolerance against simulated gastrointestinal conditions, high cell surface hydrophobicity, effective response to tested commercial oligosaccharides, especially XOS, and the highest cell antioxidant properties. L. pentosus A14-6 was therefore targeted for further applications in food and synbiotic applications.


Sign in / Sign up

Export Citation Format

Share Document