scholarly journals Methodic aspects of aircraft glide slope correction for prevention of CFIT category accidents during pre-landing descent

2020 ◽  
Vol 23 (4) ◽  
pp. 33-44
Author(s):  
V. V. Vorobуev ◽  
A. P. Beliatskaya ◽  
A. A. Supolka

Aviation accidents of the category of controlled flight into terrain in world commercial aviation are included into three "killers" in aviation together with loss of control in flight (LOC-I) and runway excursions (RE). As a result of long-term research of this problem the methods of CFIT risk level reduction, pilot training and retraining programs were developed and put into practice. Also several generations of onboard ground proximity or obstacle warning systems were created (GPWS, EGPWS, TAWS), the disadvantage of which is a passive – advisory type of warnings. The conclusions of the commissions concerning the results of aviation accidents investigations indicate the cases of crew disregard of an alarm of a ground proximity warning system and possibility of a go-around procedure to make a missed approach. Despite the aviation community actions, accidents of this category continue to occur. Therefore, search of new methods and solutions of the controlled flight into terrain problem is necessary. One of the possible ways to resolve this problem is making proximity warning systems active and two-mode operative. The first one is some type of warning to the crew about approaching the boundaries of a safe maneuvering area during approach to land as well as the recommendations to avoid a glide path deviation. The second way is that if the crew members don`t take any actions with a warning on or crew actions are not effective enough, it is necessary to regain a glide slope with temporary pilot disengagement from a control loop.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1737
Author(s):  
Ane Dalsnes Storsæter ◽  
Kelly Pitera ◽  
Edward McCormack

Pavement markings are used to convey positioning information to both humans and automated driving systems. As automated driving is increasingly being adopted to support safety, it is important to understand how successfully sensor systems can interpret these markings. In this effort, an in-vehicle lane departure warning system was compared to data collected simultaneously from an externally mounted mobile retroreflectometer. The test, performed over 200 km of driving on three different routes in variable lighting conditions and road classes found that, depending on conditions, the retroreflectometer could predict whether the car’s lane departure systems would detect markings in 92% to 98% of cases. The test demonstrated that automated driving systems can be used to monitor the state of pavement markings and can provide input on how to design and maintain road infrastructure to support automated driving features. Since data about the condition of lane marking from multiple lane departure warning systems (crowd-sourced data) can provide input into the pavement marking management systems operated by many road owners, these findings also indicate that these automated driving sensors have an important role in enhancing the maintenance of pavement markings.


2021 ◽  
Vol 11 (16) ◽  
pp. 7197
Author(s):  
Yourui Tong ◽  
Bochen Jia ◽  
Shan Bao

Warning pedestrians of oncoming vehicles is critical to improving pedestrian safety. Due to the limitations of a pedestrian’s carrying capacity, it is crucial to find an effective solution to provide warnings to pedestrians in real-time. Limited numbers of studies focused on warning pedestrians of oncoming vehicles. Few studies focused on developing visual warning systems for pedestrians through wearable devices. In this study, various real-time projection algorithms were developed to provide accurate warning information in a timely way. A pilot study was completed to test the algorithm and the user interface design. The projection algorithms can update the warning information and correctly fit it into an easy-to-understand interface. By using this system, timely warning information can be sent to those pedestrians who have lower situational awareness or obstructed view to protect them from potential collisions. It can work well when the sightline is blocked by obstructions.


Author(s):  
J. Selva ◽  
A. Amato ◽  
A. Armigliato ◽  
R. Basili ◽  
F. Bernardi ◽  
...  

AbstractDestructive tsunamis are most often generated by large earthquakes occurring at subduction interfaces, but also other “atypical” sources—defined as crustal earthquakes and non-seismic sources altogether—may cause significant tsunami threats. Tsunamis may indeed be generated by different sources, such as earthquakes, submarine or coastal landslides, volcano-related phenomena, and atmospheric perturbations. The consideration of atypical sources is important worldwide, but it is especially prominent in complex tectonic settings such as the Mediterranean, the Caribbean, or the Indonesian archipelago. The recent disasters in Indonesia in 2018, caused by the Palu-Sulawesi magnitude Mw 7.5 crustal earthquake and by the collapse of the Anak-Krakatau volcano, recall the importance of such sources. Dealing with atypical sources represents a scientific, technical, and computational challenge, which depends on the capability of quantifying and managing uncertainty efficiently and of reducing it with accurate physical modelling. Here, we first introduce the general framework in which tsunami threats are treated, and then we review the current status and the expected future development of tsunami hazard quantifications and of the tsunami warning systems in Italy, with a specific focus on the treatment of atypical sources. In Italy, where the memory of historical atypical events like the 1908 Messina earthquake or the relatively recent 2002 Stromboli tsunami is still vivid, specific attention has been indeed dedicated to the progressive development of innovative strategies to deal with such atypical sources. More specifically, we review the (national) hazard analyses and their application for coastal planning, as well as the two operating tsunami warning systems: the national warning system for seismically generated tsunamis (SiAM), whose upstream component—the CAT-INGV—is also a Tsunami Service Provider of the North-eastern Atlantic, the Mediterranean and connected seas Tsunami Warning System (NEAMTWS) coordinated by the Intergovernmental Coordination Group established by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, and the local warning system for tsunamis generated by volcanic slides along the Sciara del Fuoco of Stromboli volcano. Finally, we review the state of knowledge about other potential tsunami sources that may generate significant tsunamis for the Italian coasts, but that are not presently considered in existing tsunami warning systems. This may be considered the first step towards their inclusion in the national tsunami hazard and warning programs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mahamat Abdelkerim Issa ◽  
Fateh Chebana ◽  
Pierre Masselot ◽  
Céline Campagna ◽  
Éric Lavigne ◽  
...  

Abstract Background Many countries have developed heat-health watch and warning systems (HHWWS) or early-warning systems to mitigate the health consequences of extreme heat events. HHWWS usually focuses on the four hottest months of the year and imposes the same threshold over these months. However, according to climate projections, the warm season is expected to extend and/or shift. Some studies demonstrated that health impacts of heat waves are more severe when the human body is not acclimatized to the heat. In order to adapt those systems to potential heat waves occurring outside the hottest months of the season, this study proposes specific health-based monthly heat indicators and thresholds over an extended season from April to October in the northern hemisphere. Methods The proposed approach, an adoption and extension of the HHWWS methodology currently implemented in Quebec (Canada). The latter is developed and applied to the Greater Montreal area (current population 4.3 million) based on historical health and meteorological data over the years. This approach consists of determining excess mortality episodes and then choosing monthly indicators and thresholds that may involve excess mortality. Results We obtain thresholds for the maximum and minimum temperature couple (in °C) that range from (respectively, 23 and 12) in April, to (32 and 21) in July and back to (25 and 13) in October. The resulting HHWWS is flexible, with health-related thresholds taking into account the seasonality and the monthly variability of temperatures over an extended summer season. Conclusions This adaptive and more realistic system has the potential to prevent, by data-driven health alerts, heat-related mortality outside the typical July–August months of heat waves. The proposed methodology is general and can be applied to other regions and situations based on their characteristics.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A56-A56
Author(s):  
Mark McCauley ◽  
Peter McCauley ◽  
Hans Van Dongen

Abstract Introduction In commercial aviation and other operational settings where biomathematical models of fatigue are used for fatigue risk management, accurate prediction of recovery during rest periods following duty periods with sleep loss and/or circadian misalignment is critical. The recuperative potential of recovery sleep is influenced by a variety of factors, including long-term, allostatic effects of prior sleep/wake history. For example, recovery tends to be slower after sustained sleep restriction versus acute total sleep deprivation. Capturing such dynamics has proven to be challenging. Methods Here we focus on the dynamic biomathematical model of McCauley et al. (2013). In addition to a circadian process, this model features differential equations for sleep/wake regulation including a short-term sleep homeostatic process capturing change in the order of hours/days and a long-term allostatic process capturing change in the order of days/weeks. The allostatic process modulates the dynamics of the homeostatic process by shifting its equilibrium setpoint, which addresses recently observed phenomena such as reduced vulnerability to sleep loss after banking sleep. It also differentiates the build-up and recovery rates of fatigue under conditions of chronic sleep restriction versus acute total sleep deprivation; nonetheless, it does not accurately predict the disproportionately rapid recovery seen after total sleep deprivation. To improve the model, we hypothesized that the homeostatic process may also modulate the allostatic process, with the magnitude of this effect scaling as a function of time awake. Results To test our hypothesis, we added a parameter to the model to capture modulation by the homeostatic process of the allostatic process build-up during wakefulness and dissipation during sleep. Parameter estimation using previously published laboratory datasets of fatigue showed this parameter as significantly different from zero (p<0.05) and yielding a 10%–20% improvement in goodness-of-fit for recovery without adversely affecting goodness-of-fit for pre-recovery days. Conclusion Inclusion of a modulation effect of the allostatic process by the homeostatic process improved prediction accuracy in a variety of sleep loss and circadian misalignment scenarios. In addition to operational relevance for duty/rest scheduling, this finding has implications for understanding mechanisms underlying the homeostatic and allostatic processes of sleep/wake regulation. Support (if any) Federal Express Corporation


2013 ◽  
Vol 13 (1) ◽  
pp. 85-90 ◽  
Author(s):  
E. Intrieri ◽  
G. Gigli ◽  
N. Casagli ◽  
F. Nadim

Abstract. We define landslide Early Warning Systems and present practical guidelines to assist end-users with limited experience in the design of landslide Early Warning Systems (EWSs). In particular, two flow chart-based tools coming from the results of the SafeLand project (7th Framework Program) have been created to make them as simple and general as possible and in compliance with a variety of landslide types and settings at single slope scale. We point out that it is not possible to cover all the real landslide early warning situations that might occur, therefore it will be necessary for end-users to adapt the procedure to local peculiarities of the locations where the landslide EWS will be operated.


Author(s):  
E.N Bernard ◽  
H.O Mofjeld ◽  
V Titov ◽  
C.E Synolakis ◽  
F.I González

Tsunamis are an ever-present threat to lives and property along the coasts of most of the world's oceans. As the Sumatra tsunami of 26 December 2004 reminded the world, we must be more proactive in developing ways to reduce their impact on our global society. This article provides an overview of the state of knowledge of tsunamis, presents some challenges confronting advances in the field and identifies some promising frontiers leading to a global warning system. This overview is then used to develop guidelines for advancing the science of forecasting, hazard mitigation programmes and the development of public policy to realize a global system. Much of the information on mitigation and forecasting draws upon the development and accomplishments of a joint state/federal partnership that was forged to reduce tsunami hazards along US coastlines—the National Tsunami Hazard Mitigation Programme. By integrating hazard assessment, warning guidance and mitigation activities, the programme has created a roadmap and a set of tools to make communities more resilient to local and distant tsunamis. Among the tools are forecasting, educational programmes, early warning systems and design guidance for tsunami-resilient communities. Information on international cooperation is drawn from the Global Earth Observing System of Systems (GEOSS). GEOSS provides an international framework to assure international compatibility and interoperability for rapid exchange of data and information.


2006 ◽  
Vol 31 (1) ◽  
pp. 54-61
Author(s):  
Ben Wisner ◽  
Peter Walker

The massive human and economic impact of the Asian tsunami in later 2004 is mirrored in the aftershocks felt among humanitarian organisations, development agencies, and policy makers. This paper raises a number of these troubling, fundamental issues. Firstly, the call for an Indian Ocean tsunami warning system raises fundamental issues about what warning systems can, and cannot, do. Secondly, one is also forced to consider why in the first place so many people live on exposed coasts today, vulnerable not only to tsunamis but tropical storms and rainy season flooding among other hazards. Thirdly, one is challenged to question the very meaning of “recovery”. Such massive damage has been done and so many people and their livelihoods have been dislocated, is it actually possible to imagine a return to the status quo ante? Fourthly, reconstruction of the magnitude now underway in the affected areas raises many difficult questions about accountability, transparency, and the unevenness with which the international community responds to crises. The paper finishes with some recommendations.


2010 ◽  
Vol 10 (11) ◽  
pp. 2215-2228 ◽  
Author(s):  
M. Angermann ◽  
M. Guenther ◽  
K. Wendlandt

Abstract. This article discusses aspects of communication architecture for early warning systems (EWS) in general and gives details of the specific communication architecture of an early warning system against tsunamis. While its sensors are the "eyes and ears" of a warning system and enable the system to sense physical effects, its communication links and terminals are its "nerves and mouth" which transport measurements and estimates within the system and eventually warnings towards the affected population. Designing the communication architecture of an EWS against tsunamis is particularly challenging. Its sensors are typically very heterogeneous and spread several thousand kilometers apart. They are often located in remote areas and belong to different organizations. Similarly, the geographic spread of the potentially affected population is wide. Moreover, a failure to deliver a warning has fatal consequences. Yet, the communication infrastructure is likely to be affected by the disaster itself. Based on an analysis of the criticality, vulnerability and availability of communication means, we describe the design and implementation of a communication system that employs both terrestrial and satellite communication links. We believe that many of the issues we encountered during our work in the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009) on the design and implementation communication architecture are also relevant for other types of warning systems. With this article, we intend to share our insights and lessons learned.


2001 ◽  
Vol 1779 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Derek Baker ◽  
Rob Bushman ◽  
Curtis Berthelot

Different types of intelligent rollover system deployed by road agencies across North America are investigated. The importance of weight is addressed for maximum effectiveness of rollover warning messages for commercial vehicles in a potential rollover situation on sharp curves or exit ramps. The type of information that may be used to activate a rollover is discussed to analyze the number of correctly warned vehicles compared with the number of false warnings generated by the rollover warning system. A case study of the effectiveness of an intelligent rollover system is presented. On the basis of this case study, it was found that speed-based rollover warning systems generated anywhere from 44 percent to 49 percent more false rollover warnings for commercial vehicles than did rollover warning systems that employed weight information in the rollover decision criteria.


Sign in / Sign up

Export Citation Format

Share Document