scholarly journals Experimental study on strength and durability of cement and concrete by partial replacement of fine aggregate with fly ash

2017 ◽  
Vol 1 (2) ◽  
pp. 10-14 ◽  
Author(s):  
Waheed Tariq ◽  
Syed Qalandar Hussain ◽  
Dr. Abdul Nasir ◽  
Nafeesa Tayyab ◽  
Syed Hamza Gillani ◽  
...  
Author(s):  
Divesh Sharma

In this review article, the usage of bitumen, sisal fiber and the sisal fiber for improving the strength parameters of concrete is discussed in detail. Numerous research studies related to the usage of bitumen, sisal fiber and stone dust are studied in detail to determine the results and outcome out of it. Previous research works showed that all, these materials were enhancing the strength and durability aspects of the concrete and depending upon the research studies certain outcomes has been drawn which are as follows. The studies related to the usage of the bitumen or asphalt in concrete so as to produce bituminous concrete or asphaltic concrete, the previous research works conclude that the maximum strength was attained at 5 percent usage of the bitumen and after further usage the general compressive strength of the concrete starts declining. The previous studies related to the usage of the sisal fiber showed that with the usage of the sisal fiber in the concrete, the strength aspects of concrete were improving and the maximum strength was obtained at 1.5 percent usage of the sisal fiber and after his the strength starts declining. Further the studies related to the usage of the stone dust showed that with the usage of stone dust as partial replacement of the natural fine aggregate the compressive strength of the concrete was improving and it was conclude that with the increase in the percentage of the stone dust, the compressive strength of the concrete was increasing.


Author(s):  
Savita Chaudhary ◽  
Aditya Pratap Singh

The optimized RHA, by controlled burn or grinding, has been used as a pozzolanic material in cement and concrete. Using it provides several advantages, such as improved strength and durability properties, and environmental benefits related to the disposal of waste materials and to reduced carbon dioxide emissions. Up to now, little research has been done to investigate the use of RHA as supplementary material in cement and concrete production .The main objective of this work is to study the suitability of the rice husk ash as a pozzolanic material for cement replacement in concrete. However it is expected that the use of rice husk ash in concrete improve the strength properties of concrete. Also it is an attempt made to develop the concrete using rice husk ash as a source material for partial replacement of cement, which satisfies the


Author(s):  
M. Preethi ◽  
Md. Hamraj ◽  
Ashveen Kumar

The present study focuses on the preparation of M30 grade concrete by replacing fine aggregate with 0%,5%,10%,15%,20%,25% of vermiculite and cement with 0% and 10% of constant silica fume to improve the performance of concrete. Via experimentation, the impact of acid exposure on concrete strength and weight is investigated in the current report. Concrete cubes of different mixes(12no.’s) are casted and exposed to Sulphuric acid of (pH=3). Cubes with dimensions of 100mm x 100mm x 100mm are cast with M30 concrete and then immersed (cured) in water for 28 days. The cubes are then soaked in 4 percent concentrated Sulphuric acid for 7 days. The compressive strength of the cured cubes is then measured using a compressive measuring machine.


2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


Sign in / Sign up

Export Citation Format

Share Document