scholarly journals NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane

2021 ◽  
Vol 4 (5) ◽  
pp. e202000972
Author(s):  
Ian M Ahearn ◽  
Helen R Court ◽  
Farid Siddiqui ◽  
Daniel Abankwa ◽  
Mark R Philips

Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane.


2005 ◽  
Vol 16 (4) ◽  
pp. 1606-1616 ◽  
Author(s):  
David Michaelson ◽  
Wasif Ali ◽  
Vi K. Chiu ◽  
Martin Bergo ◽  
Joseph Silletti ◽  
...  

The CAAX motif at the C terminus of most monomeric GTPases is required for membrane targeting because it signals for a series of three posttranslational modifications that include isoprenylation, endoproteolytic release of the C-terminal– AAX amino acids, and carboxyl methylation of the newly exposed isoprenylcysteine. The individual contributions of these modifications to protein trafficking and function are unknown. To address this issue, we performed a series of experiments with mouse embryonic fibroblasts (MEFs) lacking Rce1 (responsible for removal of the –AAX sequence) or Icmt (responsible for carboxyl methylation of the isoprenylcysteine). In MEFs lacking Rce1 or Icmt, farnesylated Ras proteins were mislocalized. In contrast, the intracellular localizations of geranylgeranylated Rho GTPases were not perturbed. Consistent with the latter finding, RhoGDI binding and actin remodeling were normal in Rce1- and Icmt-deficient cells. Swapping geranylgeranylation for farnesylation on Ras proteins or vice versa on Rho proteins reversed the differential sensitivities to Rce1 and Icmt deficiency. These results suggest that postprenylation CAAX processing is required for proper localization of farnesylated Ras but not geranygeranylated Rho proteins.



1994 ◽  
Vol 14 (1) ◽  
pp. 744-758 ◽  
Author(s):  
F Beranger ◽  
H Paterson ◽  
S Powers ◽  
J de Gunzburg ◽  
J F Hancock

C-terminal lipid modifications are essential for the interaction of Ras-related proteins with membranes. While all Ras proteins are farnesylated and some palmitoylated, the majority of other Ras-related proteins are geranylgeranylated. One such protein, Rab6, is associated with the Golgi apparatus and has a C-terminal CXC motif that is geranylgeranylated on both cysteines. We show here that farnesylation alone cannot substitute for geranylgeranylation in targeting Rab6 to the Golgi apparatus and that whereas Ras proteins that are farnesylated and palmitoylated are targeted to the plasma membrane, mutant Rab proteins that are both farnesylated and palmitoylated associate with the Golgi apparatus. Using chimeric Ras-Rab proteins, we find that there are sequences in the N-terminal 71 amino acids of Rab6 which are required for Golgi complex localization and show that these sequences comprise or include the effector domain. The C-terminal hypervariable domain is not essential for the Golgi complex targeting of Rab6 but is required to prevent prenylated and palmitoylated Rab6 from localizing to the plasma membrane. Functional analysis of these mutant Rab6 proteins in Saccharomyces cerevisiae shows that wild-type Rab6 and C-terminal mutant Rab6 proteins which localize to the Golgi apparatus in mammalian cells can complement the temperature-sensitive phenotype of ypt6 null mutants. Interestingly, therefore, the C-terminal hypervariable domain of Rab6 is not required for this protein to function in S. cerevisiae.



1997 ◽  
Vol 326 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Kristin DENZER ◽  
Birgit WEBER ◽  
Annette HILLE-REHFELD ◽  
Kurt VON FIGURA ◽  
Regina POHLMANN

The cytoplasmic tail of the human 46 kDa mannose 6-phosphate receptor (MPR 46) is necessary for rapid internalization of the receptor and sufficient to mediate internalization of a resident plasma membrane protein. To localize the internalization sequences within the 67 amino acids of the cytoplasmic tail, the tail was progressively shortened from its C-terminus, internal deletions of between four and eight amino acids were introduced into the tail, and individual residues were substituted by alanine, glycine or serine. Three sequences were identified that contribute to the internalization of MPR 46. The first is located within the 23 juxtamembrane cytoplasmic residues of the tail. It contains four essential residues within a heptapeptide and does not resemble known internalization signals. The second sequence contains as a critical residue Tyr-45. The third region is located within the C-terminal seven residues and contains a di-leucine pair as essential residues. The first and third sequences were shown to function as autonomous internalization sequences. Substitution of critically important residues within a single internalization sequence was tolerated, with no or only a moderate decrease in the internalization rate. When essential residues from two or all three internalization sequences were substituted, however, the internalization rate was decreased by more than 60% and 90% respectively. This indicates that the autonomous internalization signals in the cytoplasmic tail of MPR 46 function in an additive manner, but are partly redundant.



1994 ◽  
Vol 14 (1) ◽  
pp. 744-758
Author(s):  
F Beranger ◽  
H Paterson ◽  
S Powers ◽  
J de Gunzburg ◽  
J F Hancock

C-terminal lipid modifications are essential for the interaction of Ras-related proteins with membranes. While all Ras proteins are farnesylated and some palmitoylated, the majority of other Ras-related proteins are geranylgeranylated. One such protein, Rab6, is associated with the Golgi apparatus and has a C-terminal CXC motif that is geranylgeranylated on both cysteines. We show here that farnesylation alone cannot substitute for geranylgeranylation in targeting Rab6 to the Golgi apparatus and that whereas Ras proteins that are farnesylated and palmitoylated are targeted to the plasma membrane, mutant Rab proteins that are both farnesylated and palmitoylated associate with the Golgi apparatus. Using chimeric Ras-Rab proteins, we find that there are sequences in the N-terminal 71 amino acids of Rab6 which are required for Golgi complex localization and show that these sequences comprise or include the effector domain. The C-terminal hypervariable domain is not essential for the Golgi complex targeting of Rab6 but is required to prevent prenylated and palmitoylated Rab6 from localizing to the plasma membrane. Functional analysis of these mutant Rab6 proteins in Saccharomyces cerevisiae shows that wild-type Rab6 and C-terminal mutant Rab6 proteins which localize to the Golgi apparatus in mammalian cells can complement the temperature-sensitive phenotype of ypt6 null mutants. Interestingly, therefore, the C-terminal hypervariable domain of Rab6 is not required for this protein to function in S. cerevisiae.



1992 ◽  
Vol 119 (3) ◽  
pp. 617-627 ◽  
Author(s):  
P Adamson ◽  
H F Paterson ◽  
A Hall

The three mammalian ras proteins associated specifically with the plasma membrane and this is essential for their biological activity. Two signals encoded within the extreme COOH terminus of the proteins specify this cellular localization; a CAAX box in combination with either a polybasic domain (p21K-rasB) or a palmitoylation site (p21Ha-ras and p21N-ras). All members of the ras-like and rho-like subfamilies of the ras superfamily of small GTP-binding proteins also have CAAX boxes with potential second site sequences resembling either p21K-rasB or P21N-ras/Ha-ras. However it is not at all clear that they are each located at the plasma membrane, and in fact one of the ras-like proteins, rap1, has been localized to the Golgi (Beranger et al., 1991). None of the mammalian rho-like subfamily has yet been localized. Three forms (A, B, and C) of p21rho, the prototype of this family are known; the COOH termini of p21rhoA and p21rhoC resemble p21K-rasB with a polybasic domain, whereas p21rhoB resembles p21N-ras/Ha-ras with two cysteine residues as potential palmitoylation sites. Despite this similarity to the p21ras proteins, rho proteins have been purified from both particulate and cytosolic fractions of a variety of tissues. In order to localize definitively the three rho proteins we have used an epitope tagging approach coupled to microinjection of living cells. We show that a small fraction of all three proteins is localized to the plasma membrane but the majority of p21rhoA and p21rhoC is cytosolic whereas p21rhoB is associated with early endosomes and a pre-lysosomal compartment. Along with the results obtained with chimeric molecules using heterologous proteins attached to rho COOH termini, this suggests that the p21rho proteins cycle on and off the plasma membrane and this may have important implications for their biological function.



2021 ◽  
Vol 7 (12) ◽  
pp. eabd4113
Author(s):  
Rui Miao ◽  
Wei Yuan ◽  
Yue Wang ◽  
Irene Garcia-Maquilon ◽  
Xiaolin Dang ◽  
...  

The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.



2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Jolene Ramsey ◽  
Emily C. Renzi ◽  
Randy J. Arnold ◽  
Jonathan C. Trinidad ◽  
Suchetana Mukhopadhyay

ABSTRACT Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a −1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo. Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.



2014 ◽  
Vol 19 (Suppl 1) ◽  
pp. S14
Author(s):  
Christoph Gertzen ◽  
Lina Spomer ◽  
Birte Schmitz ◽  
Dieter Häussinger ◽  
Verena Keitel ◽  
...  


1995 ◽  
Vol 73 (S1) ◽  
pp. 453-458 ◽  
Author(s):  
Hiroshi Otani ◽  
Keisuke Kohmoto ◽  
Motoichiro Kodama

There are now nine or more Alternaria pathogens that produce host-specific toxins, and the structures of most of the toxins have been elucidated. Alternaria host-specific toxins are classified in three groups in terms of the primary site action. ACT-, AF-, and AK-toxins have in common an epoxy-decatrienoic acid structure and exert their primary effect on the plasma membrane of susceptible cells. A rapid increase in electrolyte loss from tissues and invaginations in the plasma membranes are common effects of these toxins. The second group is represented by ACR(L)-toxin, which induces changes in mitochondria, including swelling, vesiculation of cristae, decrease in the electron density of the matrix, increase in the rate of NADH oxidation, and inhibition of malate oxidation. The third group consists of AM-toxin, which appears to exert an early effect on both chloroplasts and plasma membranes. AM-toxin induces vesiculation of grana lamellae, inhibition of CO2 fixation, invagination of plasma membranes, and electrolyte loss. The roles of host-specific toxins in pathogenesis are discussed. Key words: Alternaria, host-specific toxin, plasma membrane, mitochondrion, chloroplast.



Sign in / Sign up

Export Citation Format

Share Document