Facile synthesis of calcium oxide nanoparticles from the carica papaya leaf extract with the significantly enhanced antibacterial activity

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Dhivya B ◽  
Sujatha K ◽  
Sudha A P

The conventional methods for the synthesis of metal oxides intake large amount of hazardous chemicals, the best promising alternative is the use of plant extracts. In this work, calcium oxide nanoparticles of 16 nm size with the cubic shape were synthesized using the papaya leaf extract by the simple greener route using calcium chloride as a source material by co-precipitation method. By using the XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscope) and EDAX (Energy Dispersive X-ray Analysis), the structural,surface morphology, functional group and the antibacterial activity of the synthesized calcium oxide nanoparticles were analyzed. The XRD pattern of the CaO nanoparticles was well matched with the standard value and the crystalline size obtained using the Scherer formula was 16 nm. The elemental composition of the prepared sample was confirmed by the EDAX result. The presence of the functional groups of the synthesized CaO nanoparticles was confirmed by the FTIR analysis (4000-400 cmˉ1). The cubic morphology was identified from the SEM image and the grain size ranges from 125-218 nm. The CaO nanoparticles were further evaluated for their antibacterial activity against Staphylococcus aureus and klebsiella pneumonia and from the result it was found that CaO nanoparticles was active against both gram positive and gram negativebacteria.Therefore, it may be an emerging platform for new medicines.

2017 ◽  
Vol 41 (5) ◽  
pp. 2055-2061 ◽  
Author(s):  
Tokeer Ahmad ◽  
Ruby Phul ◽  
Nafeesa Khatoon ◽  
Meryam Sardar

Iron oxide nanoparticles (IONPs) were preparedviaa co-precipitation method and were then characterized and evaluated for their antibacterial activity after modification withOcimum sanctumleaf extract.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Hemalatha D ◽  
Shanmugapriya B

Copper oxide nanoparticles were synthesized by Chemical Precipitation Method using Copper Chloride Dihydrate (CuCl2. 2H2O), Sodium hydroxide (NaOH) as a precipitating agent. The Synthesized Copper Oxide nanoparticles were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR). The Antibacterial activity of copper Oxide nanoparticles was tested against both gram positive and negative bacteria. In XRD, the crystal size and dislocation density of Copper Oxide nanoparticles were calculated, Element’s purity was determined by EDX spectra. The SEM image confirms the presence of homogeneous spherical distribution of copper oxide nanoparticles. The nanoparticles shows interactions between copper and oxygen atoms were supported by FTIR studies. Copper Oxide nanoparticles have exhibits good antibacterial activity against Klebsiella pneumonia, Escherichia coli,Staphylococcus, and Bacillus cereus.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarth R ◽  
Sudha A P ◽  
Sujatha B ◽  
Sowmya Lakshmi K

The phytosynthesis of n-type Cadmium Oxide Nanoparticles reduces the toxicity of the substance and makes it Eco-friendly. This Eco-friendly biosynthesis of CdO NPs was synthesized for the first time from the Queen of herbs, Ocimum Sanctum (holy basil).The biosynthesized Cadmium oxide was prepared using Ocimum leaf extract as a reductant and Cadmium Chloride and hydroxide as cadmium and oxide source materials by Co- Precipitation method. Thus obtained Cadmium Oxide Nanoparticles were characterized by different techniques such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM),Energy dispersive X-ray spectroscopy(EDS) to study the structural and morphological properties. XRD pattern exhibited the formation of face centered cubic structure of CdO NPs with an average crystalline size of 11.5nm .The chemical bond formation of CdO NPs were confirmed by FTIR spectrum in the range of (400-4000cm-1). The SEM micrographs revealed the predominant formation of Cauliflower shape with a particle size in the range of 61-142nm. The high purity of the biosynthesized nanoparticles were confirmed by EDS analysis. Further it was tested against gram positive and gram negative bacterial strains and showed significant antibacterial activity. This biosynthetic research study opens an innovative window to progress our understanding of how CdO NPs shows resistance to different bacterial strains.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Gowthami R ◽  
Keerthana G

The UV- Vis spectroscopy determines the band gap of calcium oxide nanoparticles and also the calcium oxide nanoparticles shows excellent antibacterial activity due to its degradation property.


2019 ◽  
Vol 35 (5) ◽  
pp. 1539-1545
Author(s):  
Hossein Bayahia

This study outlines the synthesis of cerium oxide nanoparticles, their characterization and their activity in the oxidation of methanol. A simple and easy co-precipitation method was used for the preparation of cerium oxide, without any added surfactants. The physicochemical properties of the sample were studied using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The morphology and size of the catalyst was studied using SEM. EDX confirms the element content of the synthesized cerium oxide. The structure of CeO2 was confirmed using XRD. Thus, the reported CeO2 was an active catalyst for methanol oxidation to form formaldehyde at a temperature range of 523–753K in the gas phase. At 753K, the cerium oxide catalyst gave 53% formaldehyde selectivity, 57% methanol conversion and 31% formaldehyde yields.


2018 ◽  
Vol 10 (6) ◽  
pp. 224 ◽  
Author(s):  
Manyasree D. ◽  
Kiranmayi P. ◽  
Venkata R Kolli

Objective: In the present study the antibacterial activity of zinc oxide (ZnO) nanoparticles was investigated against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) organisms.Methods: The synthesis of ZnO nanoparticles was carried out by co-precipitation method using zinc sulfate and sodium hydroxide as precursors. These nanoparticles were characterized by XRD (X-Ray Diffraction), FTIR (Fourier Transform Infrared Radiation), UV-Visible spectroscopy and SEM (Scanning Electron Microscope) with EDX (Energy Dispersive X-ray analysis). As well as antibacterial activity and minimum inhibitory concentration of the nanoparticles were carried out by agar well diffusion method and broth dilution method respectively against gram negative (Escherichia coli and Proteus vulgaris) and gram positive (Staphylococcus aureus and Streptococcus mutans) bacteria.Results: The average crystallite size of ZnO nanoparticles was found to be 35 nm by X-ray diffraction. The vibration bands at 450 and 603 cm-1 which were assigned for ZnO stretching vibration were observed in FTIR spectrum. The optical absorption band at 383 nm was obtained from UV-Visible spectrum. Spherical shape morphology was observed in SEM studies. The antibacterial assay clearly expressed that E. coli showed a maximum zone of inhibition (32±0.20 mm) followed by Proteus vulgaris (30±0.45 nm) at 50 mg/ml concentration of ZnO nanoparticles.Conclusion: Zinc oxide nanoparticles have exhibited good antibacterial activity with gram negative bacteria when compared to gram positive bacteria.


A simple cost effective preparation of Magnesium oxide nanoparticles in nanotube morphology is reported using Chemical co-precipitation method. As prepared magnesium oxide nanoparticles were characterized using UV-visible spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscope and Energy dispersive X-ray spectroscopy. As prepared magnesium oxide nanoparticles were found in nanotube morphology whose inner and outer diameter were 31 nm and 78 nm. The band gap of as prepared nanotubes were found to be 5.37eV with maximum absorbance at 200 nm.


2018 ◽  
Vol 35 (4) ◽  
pp. 791-798 ◽  
Author(s):  
Thirunavukkarasu Arunachalam ◽  
Muthukumaran Karpagasundaram ◽  
Nithya Rajarathinam

Abstract Cerium oxide nanoparticles (CONPs) were prepared using ultrasound assisted leaf extract of Prosopis juliflora acting as a reducing as well as stabilizing agent. The synthesized CONPs were characterized by ultraviolet-visible absorption spectroscopy (UV-Vis), particle size analyzer (PSA), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). From the UV-Vis analysis, the optical band gap of the prepared CONPs (Eg = 3.62 eV) was slightly increased as compared to the bulk ceria (Eg = 3.19 eV). The phytochemicals in the extract reduced the particle size to 3.7 nm ± 0.3 nm, as it is evident from the PSA. FT-IR results confirmed the Ce-O stretching bands by showing the peaks at 452 cm-1. The Raman spectrumshowed a characteristic peak shift for CONPs at 461.2 cm-1. XRD analysis revealed the cubic fluorite structure of the synthesizednanoparticles with the lattice constant, a of 5.415 Å and unit cell volume, V of 158.813 Å3. XPS signals were used to determine the concentration of Ce3+ and Ce4+ in the prepared CONPs and it was found that major amount of cerium exist in the Ce4+ state. HRTEM images showed spherical shaped particles with an average size of 15 nm. Furthermore, the antibacterial activity of the prepared CONPs was evaluated and their efficacies were compared with the conventional antibiotics using disc diffusion assay against a set of Gram positive (G+) bacteria (Staphylococcus aureus, Streptococcus pneumonia) and Gram negative (G-) bacteria (Pseudomonas aeruginosa, Proteus vulgaris). The results suggested that CONPs showed antibacterial activity with significant variations due to the differences in the membrane structure and cell wall composition among the two groups tested.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Kavipriya K C ◽  
Sudha A P ◽  
Sujatha K ◽  
Sowmya Lakshmi K

The interest in miniaturization of particles revealed the hidden applications of metal oxides. The potential applications of the particles may vary when the size of the particle is reduced. One of the alternative routes to the conventional approach is the use of plant extract for the synthesis of metal oxides NPs. In the framework of this study, the ecofriendly MgO nanoparticles were synthesized using Acalypha Indica leaf extract,functioning as reducing and capping agent by co-precipitation method. The predecessor taken here was Magnesium Nitrate. The biologically synthesized MgO NPs were characterized by various techniques like X ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), Scanning electron microscope (SEM) with Energy Dispersive X-ray spectroscopy(EDX) profile and its antibacterial activity is evaluated against causative organisms. XRD studies confirmed the face centered cubic crystalline structure of MgO NPs and the average crystalline size of MgO NPs calculated using Scherer’s formula was found to be 13 nm. FTIR spectrum shows a significant Mg-O vibrational band. Purity, surface morphology and chemical composition of elements were confirmed by SEM with EDX. The SEM result shows the fine spherical morphology with the grain size range between 43nm to 62nm. Antimicrobial assay of MgO NPs was examined against gram positive and negative bacteria. Appreciated activity was observed on the Staphylococcus aureus bacterial species. In general, the renewed attempt of this facile approach gave the optimum results of multifunctional MgO NPs.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Edna X. Figueroa-Rosales ◽  
Javier Martínez-Juárez ◽  
Esmeralda García-Díaz ◽  
Daniel Hernández-Cruz ◽  
Sergio A. Sabinas-Hernández ◽  
...  

Hydroxyapatite (HAp) and hydroxyapatite/multi-walled carbon nanotube (MWCNT) composites were obtained by the co-precipitation method, followed by ultrasound-assisted and microwave radiation and thermal treatment at 250 °C. X-ray diffraction (XRD) confirmed the presence of a hexagonal phase in all the samples, while Fourier-transform infrared (FTIR) spectroscopy elucidated the interaction between HAp and MWCNTs. The photoluminescent technique revealed that HAp and the composite with non-functionalized MWCNTs present a blue luminescence, while the composite with functionalized MWCNTs, under UV-vis radiation shows an intense white emission. These findings allowed presentation of a proposal for the use of HAp and HAp with functionalized MWCNTs as potential materials for optoelectronic and medical applications.


Sign in / Sign up

Export Citation Format

Share Document