scholarly journals Mass and performance estimation of hydrogen and battery powered transport aircraft concepts

2021 ◽  
Author(s):  
Viktor Babčan ◽  
◽  
Michal Janovec

This article introduces the scope and activities linked to an end of studies project. This project is a collaboration between UNIZA and ENAC and includes work of Pascal Roches and Thierry Druot on top of the student and his UNIZA tutor mentioned above. This article describes the environment of ENAC and the particular department CADO in which the project is being accomplished. It also sets the definition of the project, its main goals and deliverables. Finally, it shows methods of the work that has been done so far, that is the completion of the database of 324 commercial aircraft, which took the largest amount of time so far. It also introduces the software, which will be used to define different models required to calculate initial dimensions and performance parameters of battery or fuel cell concept aircraft.

Author(s):  
Rosa Romano

The Smart Skin Envelope research analyses the recent revolution that has taken place in the sector of planning and production of smart skin components, made up of dynamic layers. The aim is to identify the technological, functional, qualitative and performance parameters that guide the decisions of the actors in the innovation process. It explores the factors that drive them to develop solutions and proposals designed to transform the envelope of the building from a static to a dynamic element, featuring interoperable components that can interact with the input from the outdoor and indoor environments, in relation to which the smart skin acts as a system of boundary and delimitation. The proposed research programme explores in particular the sector of Smart Envelopes, setting as its priority objective the identification and definition of the energy performance, both through analysis of the state of the art and through the development of a facade component that is dynamic in terms of the adaptive variability of its performance.


Author(s):  
Francesco Trasino ◽  
Michele Bozzolo ◽  
Loredana Magistri ◽  
Aristide F. Massardo

This paper is focused on the performance of the 1 MW plant designed and developed by Rolls-Royce Fuel Cell Systems Limited. The system consists of a two stage turbogenerator coupled with pressure vessels containing the fuel cell stack, internal reformer, cathode ejector, anode ejector, and off-gas burner. While the overall scheme is relatively simple, due to the limited number of components, the interaction between the components is complex and the system behavior is determined by many parameters. In particular, two important subsystems such as the cathode and the anode recycle loops must be carefully analyzed also considering their interaction with and influence on the turbogenerator performance. The system performance model represents the whole, and each physical component is modeled in detail as a subsystem. The component models have been validated or are under verification. The model provides all the operating parameters in each characteristic point of the plant and a complete distribution of thermodynamics and chemical parameters inside the solid oxide fuel cell (SOFC) stack and reformer. In order to characterize the system behavior, its operating envelope has been calculated taking into account the effect of ambient temperature and pressure, as described in the paper. Given the complexity of the system, various constraints have to be considered in order to obtain a safe operating condition not only for the system as a whole but also for each of its parts. In particular each point calculated has to comply with several constraints such as stack temperature distribution, maximum and minimum temperatures, and high and low pressure spool maximum rotational speeds. The model developed and the results presented in the paper provide important information for the definition of an appropriate control strategy and a first step in the development of a robust and optimized control system.


Author(s):  
William L. Becker ◽  
Robert J. Braun ◽  
Michael Penev

SOFC systems with co-generation exhibit high overall efficiency. Fuel cell-based co-generation studies have typically focused on electricity and heat; pure hydrogen gas can also be generated in these systems as an energy co-product resulting in the combined production of heat, hydrogen, and power (CHHP). Co-locating a distributed generation SOFC CHHP plant with fueling stations for fuel cell vehicles enables use of lower scale (200 kg/day) hydrogen production and leverages the capital investment among all co-products, thereby lowering the unit cost of hydrogen and offering a potentially promising transition pathway to a hydrogen economy. This work focuses on the design and performance estimation of a methane-fueled 1 MW SOFC CHHP system operating at steady-state. System design and modeling are carried out employing Aspen Plus™ software where performance characteristics of the SOFC and the balance-of-plant are estimated from industry and literature sources. Analysis of the SOFC CHHP system indicates that the SOFC electrochemical performance is independent of the heat recovery and hydrogen production processes because the latter two subsystems are downstream of the SOFC power module. The system is configured such that it can preferentially produce hydrogen or low-temperature thermal energy (80 °C) as needed. Two methods of hydrogen purification and recovery from the SOFC tail-gas were analyzed: pressure swing adsorption (PSA) and electrochemical hydrogen separation (EHS). The recovered hydrogen is compressed to 425 bar for storage. The SOFC electrical efficiency at rated power is estimated at 48.1% (LHV) and the overall CHHP efficiency is 84.4% (LHV) for the EHS design concept. The amount of hydrogen recovery (85–90%) with EHS is higher than PSA for typical SOFC effluent gas compositions. The hydrogen separation energy requirement of 2.7 kWh/kg H2 for EHS is found to be about three times lower than PSA in this system. Increasing the amount of hydrogen production can be independently controlled by flowing excess methane into the system, effectively decreasing SOFC fuel utilization yet still reforming the fuel to a hydrogen-rich syngas. A case study for hydrogen overproduction is given. Operating the system to produce excess hydrogen increases the efficiency for both hydrogen separation design concepts.


Author(s):  
Francesco Trasino ◽  
Michele Bozzolo ◽  
Loredana Magistri ◽  
Aristide F. Massardo

This paper is focused on the performance of the 1MW plant designed and developed by Rolls-Royce Fuel Cell Systems Limited. The system consists of a two stage turbogenerator coupled with pressure vessels containing the fuel cell stack, internal reformer, cathode ejector, anode ejector and off gas burner. While the overall scheme is relatively simple, due to the limited number of components, the interaction between the components is complex and the system behaviour is determined by many parameters. In particular two important subsystems such as the cathode and the anode recycle loops must be carefully analyzed also considering their interaction with and influence on the turbogenerator performance. The system performance model represents the whole and each physical component is modelled in detail as a sub-system. The component models have been validated or are under verification. The model provides all the operating parameters in each characteristic point of the plant and a complete distribution of thermodynamics and chemical parameters inside the SOFC stack and reformer. In order to characterise the system behaviour, its operating envelope has been calculated taking into account the effect of ambient temperature and pressure as described in the paper. Given the complexity of the system various constraints have to be considered in order to obtain a safe operating condition not only for the system as a whole but also for each of its parts. In particular each point calculated has to comply with several constraints such as stack temperature distribution, maximum and minimum temperatures and high and low pressure spool maximum rotational speeds. The model developed and the results presented in the paper provide important information for the definition of an appropriate control strategy and a first step in the development of a robust and optimized control system.


Author(s):  
A. Alali ◽  
I. Assayad ◽  
M. Sadik

<p>To deploy the enormous hardware resources available in Multi Processor Systems-on-Chip (MPSoC) efficiently, rapidly and accurately, methods of Design Space Exploration (DSE) are needed to evaluate the different design alternatives. In this paper, we present a framework that makes fast simulation and performance evaluation of MPSoC possible early in the design flow, thus reducing the time-to-market. In this framework and within the Transaction Level Modeling (TLM) approach, we present a new definition of ISS level by introducing two complementary modeling sublevels ISST and ISSPT. This later, that we illustrate an arbiter modeling approach that allows a high performance MPSoC communication. A round-robin method is chosen because it is simple, minimizes the communication latency and has an accepted speed-up. Two applications are tested and used to validate our platform: Game of life and JPEG Encoder. The performance of the proposed approach has been analyzed in our platform MPSoC based on multi-MicroBlaze. Simulation results show with ISSPT sublevels gives a high simulation speedup factor of up to 32 with a negligible performance estimation error margin.</p>


Author(s):  
David Jollie

The vision of a world without oil or other fossil fuels is both surreal and at the same time seductive as a solution to current concerns over climate change and oil availability. It is also, to some extents, an irrelevant one for fuel cells. Rather than being an energy source they provide a mechanism for transforming one form of energy (chemical) to another (typically electricity or heat). In this way, they resemble batteries, internal combustion engines, and even steam engines. The key to their value is really their efficiency: they are able to carry out this transformation cleanly and efficiently. Fuel cells are not yet fully developed. The technology and the fuel cell effect were discovered in 1839 by, depending on your point of view, William Grove or Christian Schoenbein (Sanstede et al., 2003). For a long time after this, the technology was essentially dormant until the 1940s when Francis Bacon started working on it and the 1950s when Allis-Chalmers built the first application of the technology (a fuel cell powered tractor). Research and development accelerated when fuel cells were chosen as power sources for space missions in the 1960s and the 1970s oil price shocks increased interest in other technologies, but the real impetus came in the 1990s when DaimlerChrysler examined the proton exchange membrane fuel cell and decided that it could be used to power a vehicle. Considerable effort is still to be expended on improving fuel cell technology in terms of cost and performance. Ancillary questions like the best method of fuelling and of carrying fuel still remain to be solved. However, we have begun to see fuel cells entering the commercial marketplace and the coming years and decades should see this accelerate. A simple definition of a fuel cell might be ‘a device that reacts a fuel and an oxidant, without combustion, producing heat and electricity’. The best-known case, that of a proton exchange membrane (PEM) fuel cell (PEMFC), is illustrated in Fig. 11.1. In a PEM fuel cell, the fuel is hydrogen, the oxidant is oxygen and the only chemical product is water, as described in reaction (1): . . . 2H2 + O2 ⇒ 2H2O + heat + electricity (11.1) . . .


2018 ◽  
Author(s):  
V.M. Alakin ◽  
G.S. Nikitin

Приведены результаты исследований экспериментального картофелекопателя с ротационной сепарирующей поверхностью. Особое внимание уделяется обоснованию конструктивных параметров и определению рабочих характеристик нового сепарирующего устройства. На основе анализа результатов экспериментальных исследований определены наиболее оптимальные режимы работы экспериментального картофелекопателя.Research results of an experimental potato digger with rotational separating web are published in this article. Special attention is paid to definition of design characteristics and performance data of the new separating device. Admissible operating modes are defined on the basis of the analysis of results of pilot studies of the experimental potato digger.


2004 ◽  
Vol 15 (3) ◽  
pp. 246-246
Author(s):  
M.A. Tony ◽  
A. Butschke ◽  
J. Zagon ◽  
H. Broll ◽  
M. Schauzu ◽  
...  

Author(s):  
Fred Luthans ◽  
Carolyn M. Youssef

Over the years, both management practitioners and academics have generally assumed that positive workplaces lead to desired outcomes. Unlike psychology, considerable attention has also been devoted to the study of positive topics such as job satisfaction and organizational commitment. However, to place a scientifically based focus on the role that positivity may play in the development and performance of human resources, and largely stimulated by the positive psychology initiative, positive organizational behavior (POB) and psychological capital (PsyCap) have recently been introduced into the management literature. This chapter first provides an overview of both the historical and contemporary positive approaches to the workplace. Then, more specific attention is given to the meaning and domain of POB and PsyCap. Our definition of POB includes positive psychological capacities or resources that can be validly measured, developed, and have performance impact. The constructs that have been determined so far to best meet these criteria are efficacy, hope, optimism, and resiliency. When combined, they have been demonstrated to form the core construct of what we term psychological capital (PsyCap). A measure of PsyCap is being validated and this chapter references the increasing number of studies indicating that PsyCap can be developed and have performance impact. The chapter concludes with important future research directions that can help better understand and build positive workplaces to meet current and looming challenges.


2020 ◽  
Vol 8 (46) ◽  
pp. 24284-24306
Author(s):  
Xuefeng Ren ◽  
Yiran Wang ◽  
Anmin Liu ◽  
Zhihong Zhang ◽  
Qianyuan Lv ◽  
...  

Fuel cell is an electrochemical device, which can directly convert the chemical energy of fuel into electric energy, without heat process, not limited by Carnot cycle, high energy conversion efficiency, no noise and pollution.


Sign in / Sign up

Export Citation Format

Share Document