scholarly journals Optimization of Fuel Costs Using the Information System

2013 ◽  
Vol 1 (1) ◽  
pp. 1-3
Author(s):  
Dušan Halaj ◽  

The paper deals with optimizing fuel consumption through the use of information system in road freight transport. The aim is to calculate and compare the costs for an operation with the information system as well as without it.

Author(s):  
BaeGeun Hwang ◽  
Eui Jae Lee ◽  
Jeong Jae Kim ◽  
Sang Joon Lee

There are many attempts to save the cost of transportation. Especially, drag reduction of heavy vehicles such as truck or tractor-trailer have enormous effect on the reduction of fuel consumption and CO2 emission, because road freight transport using heavy vehicles occupies majority in physical distribution cost.


2013 ◽  
Vol 16 (1) ◽  
pp. 18-21 ◽  
Author(s):  
Mário Szabó ◽  
Radoslav Majdan ◽  
Zdenko Tkáč ◽  
Rastislav Čápora ◽  
Ľubomír Hujo

Abstract This paper deals with the importance of fuel economy in road freight transport. It provides the calculation of financial savings for fuel savings of 0.5 l per 100 km. In the subsequent part, some factors that influence the fuel consumption are specified, e.g. aerodynamic resistance, rolling resistance, and tyre inflation pressure. The effect of tyre inflation pressure on fuel economy has been tested on four selected towing vehicles. Based on the results obtained, it can be stated that tyre pressure has a great impact on fuel consumption. A one-bar pressure reduction of tyres can increase the fuel consumption by 0.5 l per 100 km.


2021 ◽  
Vol 13 (17) ◽  
pp. 9641
Author(s):  
Nathalie Touratier-Muller ◽  
Jacques Jaussaud

The transport procurement process is based on criteria selected by shippers when soliciting tenders from carriers. Although sustainable transport indicators are not yet a formal selection criterion in France, some indicators are starting to be gradually considered in freight transport contracts between shippers and carriers. Dispersed information can be gathered regarding Euro 5 and Euro 6 standards compliance for trucks, their fuel consumption, the number of signatory shippers to the CO2 reduction charter, and the search for less-polluting alternative freight solutions. However, these elements are difficult to quantify, and it is often hard to formalise and evaluate their related performance. Therefore, the objective of this article is to draw up, at the request of ADEME (the French Environment and Energy Management Agency), a series of reliable, operational sustainable transport indicators that can be applied to all shippers regardless of their size or industry sector. As part of the FRET 21 charter deployment in France, this article proposes a list of measurable sustainability indicators to support transport buyers when selecting freight carriers.


2020 ◽  
Vol 13 (1) ◽  
pp. 304
Author(s):  
Anna Pernestål ◽  
Albin Engholm ◽  
Marie Bemler ◽  
Gyözö Gidofalvi

Road freight transport is a key function of modern societies. At the same time, road freight transport accounts for significant emissions. Digitalization, including automation, digitized information, and artificial intelligence, provide opportunities to improve efficiency, reduce costs, and increase service levels in road freight transport. Digitalization may also radically change the business ecosystem in the sector. In this paper, the question, “How will digitalization change the road freight transport landscape?” is addressed by developing four exploratory future scenarios, using Sweden as a case study. The results are based on input from 52 experts. For each of the four scenarios, the impacts on the road freight transport sector are investigated, and opportunities and barriers to achieving a sustainable transportation system in each of the scenarios are discussed. In all scenarios, an increase in vehicle kilometers traveled is predicted, and in three of the four scenarios, significant increases in recycling and urban freight flows are predicted. The scenario development process highlighted how there are important uncertainties in the development of the society that will be highly important for the development of the digitized freight transport landscape. One example is the sustainability paradigm, which was identified as a strategic uncertainty.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 823
Author(s):  
Mehdi Jahangir Samet ◽  
Heikki Liimatainen ◽  
Oscar Patrick René van Vliet ◽  
Markus Pöllänen

Medium and heavy-duty battery electric trucks (BETs) may play a key role in mitigating greenhouse gas (GHG) emissions from road freight transport. However, technological challenges such as limited range and cargo carrying capacity as well as the required charging time need to be efficiently addressed before the large-scale adoption of BETs. In this study, we apply a geospatial data analysis approach by using a battery electric vehicle potential (BEVPO) model with the datasets of road freight transport surveys for analyzing the potential of large-scale BET adoption in Finland and Switzerland for trucks with gross vehicle weight (GVW) of over 3.5 t. Our results show that trucks with payload capacities up to 30 t have the most potential for electrification by relying on the currently available battery and plug-in charging technology, with 93% (55% tkm) and 89% (84% tkm) trip coverage in Finland and Switzerland, respectively. Electric road systems (ERSs) would be essential for covering 51% trips (41% tkm) of heavy-duty trucks heavier than 30 t in Finland. Furthermore, range-extender technology could improve the trip electrification potential by 3–10 percentage points (4–12 percentage points of tkm).


2018 ◽  
Vol 10 (8) ◽  
pp. 2754
Author(s):  
Heikki Liimatainen ◽  
Phil Greening ◽  
Pratyush Dadhich ◽  
Anna Keyes

The potential effects of implementing longer and heavier vehicles (LHVs) in road freight transport have been studied in various countries, nationally and internationally, in Europe. These studies have focused on the implementation of LHVs on certain types of commodities and the experience from countries like Finland and Sweden, which have a long tradition of using LHVs, and in which LHVs used for all types of commodities have not been widely utilised. This study aimed to assess the impacts of long and heavy vehicles on various commodities in the United Kingdom based on the Finnish experiences in order to estimate the possible savings in road freight transport vehicle kilometres, costs, and CO2 emissions in the United Kingdom if LHVs would be introduced and used similarly to in Finland in the transport of various commodities. The study shows that the savings of introducing longer and heavier vehicles in the United Kingdom would be 1.5–2.6 billion vehicle kms, £0.7–1.5 billion in transport costs, and 0.35–0.72 Mt in CO2 emissions. These findings are well in line with previous findings in other countries. The results confirm that considerable savings in traffic volume and emissions can be achieved and the savings are very likely to outweigh possible effects of modal shift from rail to road.


Sign in / Sign up

Export Citation Format

Share Document