scholarly journals Preliminary Results of Air Pollution Status in Selected Roadsides in Jalingo, Taraba State Nigeria

Author(s):  
Maxwell Obia Kanu ◽  
Terkaa Victor Targema ◽  
Gideon Maumee Abednego

The rapid increase in vehicular activities in the past two centuries contributes vastly to air pollution levels. In as much as Social interactions and economic growth are well enhanced by vehicular transportation in many developing countries, it is unfortunate that exhausts from vehicles contribute immensely to ambient air quality especially in the urban areas. The concentrations of carbon monoxides (CO) and carbon dioxide (CO2) emissions in selected roadsides in Jalingo have been assessed. Four roads were used as sample locations where the concentration of CO2 and CO were measured using an air quality meter for four weeks. The mean concentration of CO2 and CO obtained were respectively as follows: 542.25 ppm and 7.49 ppm for the roadblock, 540.05 ppm and 5.55 ppm for Hammaruwa way, 598.81 ppm and 17.42 ppm for market road, and 463.80 ppm and 1.08 ppm for Nigerian Labour Congress (NLC) road (control). Based on the acceptable limit of CO2 (600 ppm), the Roadblock road, Hammaruwa way, and the NLC/control road are safe. Only the market road had value that exceeded the acceptable limit, and it may be attributed to high vehicular activities on the roadsides. Therefore, more alternative roads should be constructed in other to minimize traffic congestion and also, the use of nose masks should be encouraged. For the CO, all the sites are safe because they fall within the acceptable level of CO (1-70 ppm).

Author(s):  
Sirajuddin M Horaginamani ◽  
M Ravichandran

Though water and land pollution is very dangerous, air pollution has its own peculiarities, due to its transboundary dispersion of pollutants over the entire world. In any well planned urban set up, industrial pollution takes a back seat and vehicular emissions take precedence as the major cause of urban air pollution. Air pollution is one of the serious problems faced by the people globally, especially in urban areas of developing countries like India. All these in turn lead to an increase in the air pollution levels and have adverse effects on the health of people and plants. Western countries have conducted several studies in this area, but there are only a few studies in developing countries like India. A study on ambient air quality in Tiruchirappalli urban area and its possible effects selected plants and human health has been undertaken, which may be helpful to bring out possible control measures. Keywords: ambient air quality; respiratory disorders; APTI; human health DOI: 10.3126/kuset.v6i2.4007Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.13-19


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 630 ◽  
Author(s):  
Chunrong Jia ◽  
Xianqiang Fu ◽  
Debra Bartelli ◽  
Larry Smith

The lockdowns due to the COVID-19 pandemic have been reported to reduce ambient air pollution in many cities globally. This study aims to examine whether air pollution dropped in Memphis, a typical U.S. metropolitan city and transportation hub, during the lockdown from 25 March to 4 May, 2020. Daily air pollution data measured at five representative monitoring stations in the Memphis Metropolitan Area were downloaded from the U.S. Environmental Protection Agency’s Air Quality System. The mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone during the lockdown were compared with the baseline concentrations measured during the same periods in 2017–2019 using linear regression models. The average vehicle miles traveled (VMT) reduced by 57% in this region during the lockdown compared to that during 1–24 March, 2020. The mean (± standard deviation) concentrations of PM2.5, NO2, and ozone were 7.5 ± 2.6 μg/m3, 16.5 ± 9.4 ppb, and 44.5 ± 8.4 ppb, respectively, during the lockdown. They did not statistically differ from the baseline concentrations, nor were they lower than the mean concentrations in the prior month (25 February–24 March, 2020), after accounting for meteorological conditions. The lack of effect could be explained by the small contribution of traffic emissions to air pollution. The results suggest that the “stay-at-home” order had an insignificant impact on reducing air pollution in Memphis.


2021 ◽  
Author(s):  
Maayan Yitshak Sade ◽  
Liuhua Shi ◽  
Elena Colicino ◽  
Heresh Amini ◽  
Joel Schwartz ◽  
...  

Objective: Type 2 diabetes mellitus is a major public health concern. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of Medicare enrollees to estimate incidence risk. Research design and methods: We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death. We obtained air pollution annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effect of the pollutants on diabetes incidence using Poisson survival analysis with adjustment for temporal and spatial confounders. We repeated the models in data restricted to ZIP codes with air pollution levels not exceeding the ambient air quality standards during the study period. Results: We have included 264,869,458 person-years of 41,780,637 people. We observed nonlinear associations between the three pollutants and diabetes, with larger risks at lower levels for PM2.5 and O3. When restricting the data to lower air pollution levels, an increased risk for diabetes (Incidence Rate Ratio [95% Confidence Interval] was associated with interquartile range (IQR) increases in PM2.5 (1.048 [1.045;1.051]), O3 (1.016 [1.014;1.18]), and NO2 (1.040 [1.037; 1.043]). Conclusion: We found increased diabetes risk associated with air pollution exposures. The observed effects remained in exposure levels below the national ambient air quality standards in the U.S.


Topophilia ◽  
2020 ◽  
pp. 53-62
Author(s):  
Sonak Patel

This paper assesses the threat that ambient air pollution poses to urban public health and the potential role of urban vegetation to mitigate those threats. Air pollution is a major global risk to health, especially in urban areas. In this paper, four major air pollutants were assessed: particulate matter, tropospheric ozone, nitrogen dioxide, and sulfur dioxide. These pollutants were found to have several adverse effects, including increasing mortality and respiratory morbidity. These pollutants come from a variety of sources, but a major contributor in urban areas is the burning of fossil fuels in automobiles. The adverse health effects of pollution are expected to grow as climate change worsens air quality. Research and case studies find that urban vegetation can filter air and remove pollutants through deposition and stomatal uptake. The effectiveness of air pollution removal is dependent upon specific variables, including leaf characteristics, type of vegetation, and seasons. Urban vegetation may worsen air quality in some cases due to slowing ventilation and producing biological volatile organic compounds. While urban vegetation has potential to mitigate ambient air pollution, conducting site specific research is needed when implementing greenspace policies.


2018 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Manal Inchaouh ◽  
Kenza Khomsi ◽  
Pr. Mohamed Tahiri

<p><em>Air Pollution is a serious hazard worldwide especially in urban areas. Road traffic is the main cause of pollution in agglomerations that are confronted to an excess of pollutants due to traffic intensity and the dominance of diesel cars. This paper presents the assessment of road traffic pollution in the Grand Casablanca</em><em> </em><em>area. Data used are the result of simultaneous measurements at thirteen sites located in the Grand Casablanca. Available data cover 4 years period (2013</em><em>-</em><em>2016). Traffic-related air pollutants are reviewed in order to assess their impact on the local air quality. It include nitrogen dioxide (NO<sub>2</sub>), particulate matter (PM<sub>10</sub>), carbon monoxide (CO) and Benzene (C<sub>6</sub>H<sub>6</sub>). Annual evolutions are presented and compared to national air quality standards;</em><em> </em><em>NO<sub>2</sub> annual trends are also evaluated. The [NO]/[NO<sub>2</sub>] emissions ratio calculation allows then to characterize the measurement sites against road traffic. The paper focuses on determining the contribution of road traffic emissions on air quality modifying; we found spatial variability in traffic</em><em> </em><em>pollutants. The results pointed out that road traffic and conditions are the main causes of air pollution in the area and the analysis provide a quick view of the relatively critical areas that need more action to reduce this pollution.</em></p>


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158 ◽  
Author(s):  
Marta G. Vivanco ◽  
Juan Luis Garrido ◽  
Fernando Martín ◽  
Mark R. Theobald ◽  
Victoria Gil ◽  
...  

During the last few decades, European legislation has driven progress in reducing air pollution in Europe through emission mitigation measures. In this paper, we use a chemistry transport model to assess the impact on ambient air quality of the measures considered for 2030 in the for the scenarios with existing (WEM2030) and additional measures (WAM2030). The study estimates a general improvement of air quality for the WAM2030 scenario, with no non-compliant air quality zones for NO2, SO2, and PM indicators. Despite an improvement for O3, the model still estimates non-compliant areas. For this pollutant, the WAM2030 scenario leads to different impacts depending on the indicator considered. Although the model estimates a reduction in maximum hourly O3 concentrations, small increases in O3 concentrations in winter and nighttime in the summer lead to increases in the annual mean in some areas and increases in other indicators (SOMO35 for health impacts and AOT40 for impacts on vegetation) in some urban areas. The results suggest that the lower NOx emissions in the WEM and WAM scenarios lead to less removal of O3 by NO titration, especially background ozone in winter and both background and locally produced ozone in summer, in areas with high NOx emissions.


2021 ◽  
Vol 7 (2) ◽  
pp. 253-267
Author(s):  
Beti Angelevska ◽  
Vaska Atanasova ◽  
Igor Andreevski

Air pollution is a cause for serious concerns in urban areas in Republic of North Macedonia. Intensive development of road transport increases the main air pollutants’ concentrations - particulate matter and nitrogen dioxide, whose monitored values are continuously exceeding the limit. The main disadvantage of the national plans and annual reports is the absence of comprehensive and categorized list of reduction/mitigation measures for road transport impacts on air quality. Analyzing the current air pollution problem and road transport contribution this paper provides the needed and detailed categorization of short-to-long term reduction/mitigation measures consisting of five subcategories. Based on measure categorization, a guiding frame for urban air quality is designed, intended for further support and assistance for local authorities in the process of air pollution control. Designed with integrated activities, the air quality guidance enables them to select suitable measures to manage road transport pollution and to evaluate their effects estimating the changes in air pollution levels. Hence, the guidance can be used for thorough planning of air quality issues caused by road transport and for policy making. Contributing for urban air quality improvement the guidance is a first step towards the implementation of air pollution management in urban areas. Doi: 10.28991/cej-2021-03091651 Full Text: PDF


2020 ◽  
Vol 117 (41) ◽  
pp. 25370-25377
Author(s):  
Haikun Wang ◽  
Xiaojing He ◽  
Xinyu Liang ◽  
Ernani F. Choma ◽  
Yifan Liu ◽  
...  

China started to implement comprehensive measures to mitigate traffic pollution at the end of 1990s, but the comprehensive effects, especially on ambient air quality and public health, have not yet been systematically evaluated. In this study, we analyze the effects of vehicle emission control measures on ambient air pollution and associated deaths attributable to long-term exposures of fine particulate matter (PM2.5) and O3based on an integrated research framework that combines scenario analysis, air quality modeling, and population health risk assessment. We find that the total impact of these control measures was substantial. Vehicular emissions during 1998–2015 would have been 2–3 times as large as they actually were, had those measures not been implemented. The national population-weighted annual average concentrations of PM2.5and O3in 2015 would have been higher by 11.7 μg/m3and 8.3 parts per billion, respectively, and the number of deaths attributable to 2015 air pollution would have been higher by 510 thousand (95% confidence interval: 360 thousand to 730 thousand) without these controls. Our analysis shows a concentration of mortality impacts in densely populated urban areas, motivating local policymakers to design stringent vehicle emission control policies. The results imply that vehicle emission control will require policy designs that are more multifaceted than traditional controls, primarily represented by the strict emission standards, with careful consideration of the challenges in coordinated mitigation of both PM2.5and O3in different regions, to sustain improvement in air quality and public health given continuing swift growth in China’s vehicle population.


2016 ◽  
Vol 4 (1) ◽  
pp. 51 ◽  
Author(s):  
Dipak Prasad ◽  
Srabani Sanyal

Erudite groups of people, scientists, planners, and policy-makers of different countries have come to realise that quality of environment is not necessarily a simple function of nature as in primitive earth. Today nature’s self-regulatory functions are inoperative. All the developed and developing countries are deeply concerned to make balance between their environmental anxiety and their economic development. Dreadful environmental conditions are affecting the biological segment of the ecosystem of these areas. Human being, ‘one of the most precious component in biosphere’, have regular predicament situation with accretion of sullied air, water, and soil degradation. Though water and land pollution is extremely dangerous, air pollution has its own peculiarities, due to its trans-boundary dispersion of pollutants over the entire world. The effect of air pollution on health is very complex as there are many different sources and their individual effect varying from one to other. It is not only the ambient air quality in the cities but also the indoor air quality in the rural and urban areas that are causing concern.The study is confined with the health impact of deteriorating air quality in Lucknow city. The aim of the present study is also to determine the consequences of ambient air quality on health of the people in the study area.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 251
Author(s):  
Evangelos Bagkis ◽  
Theodosios Kassandros ◽  
Marinos Karteris ◽  
Apostolos Karteris ◽  
Kostas Karatzas

Air quality (AQ) in urban areas is deteriorating, thus having negative effects on people’s everyday lives. Official air quality monitoring stations provide the most reliable information, but do not always depict air pollution levels at scales reflecting human activities. They also have a high cost and therefore are limited in number. This issue can be addressed by deploying low cost AQ monitoring devices (LCAQMD), though their measurements are of far lower quality. In this paper we study the correlation of air pollution levels reported by such a device and by a reference station for particulate matter, ozone and nitrogen dioxide in Thessaloniki, Greece. On this basis, a corrective factor is modeled via seven machine learning algorithms in order to improve the quality of measurements for the LCAQMD against reference stations, thus leading to its on-field computational improvement. We show that our computational intelligence approach can improve the performance of such a device for PM10 under operational conditions.


Sign in / Sign up

Export Citation Format

Share Document