scholarly journals Optical and Electrical Properties of Graphite Thin Films Prepared by Different Methods

The paper reports on the structural, optical and electrical properties of graphite thin films prepared by two methods: the vacuum-free method "Pencil-on-semiconductor" and via the electron beam evaporation. Graphite thin films prepared by the non-vacuum method has annealed at a temperature of 920K.The transmission spectra of the investigated graphite films and the electrical properties of these thin films were measured at T = 300 K. The value of the height of barriers Eb at the grain boundaries and the temperature dependence of the electrical conductivity in the range ln(σ·T1/2) = f(103/T) were determined, It is established that the height of the barrier at the grain boundaries for the drawn graphite films is Eb = 0.03 eV, for annealed Eb = 0.01 eV and for the graphite films deposited by the electron beam evaporation Eb = 0.04 eV, ie for annealed film the barrier height is the smallest. It is shown that graphite films deposited by the electron beam evaporation reveals the highest transmittance (T550 ≈ 60%), and the transmission of drawn films is the lowest, annealing leads to its increase. The minimum values ​​of transmission at a wavelength λ = 250nm are due to the scattering of light at the defects that are formed at the grain boundaries. Annealed graphite films have been found to possess the best structural perfection because they have the lowest resistivity compared to non-annealed films and electron-beam films and have the lowest barrier height. Simultaneous increase of transmission in the whole spectral range, increase of specific electrical conductivity and decrease of potential barrier at grain boundaries of the annealed drawn graphite film clearly indicate ordering of drawn graphite flakes transferred onto anew substrate, which led to the reduction of light scattering and the improvement of charge transport due to the larger area of ​​overlap between graphite flakes.

2015 ◽  
Vol 15 (9) ◽  
pp. 964-969 ◽  
Author(s):  
Hui Kyung Park ◽  
Jaeseung Jo ◽  
Hee Kyeung Hong ◽  
Gwang Yeom Song ◽  
Jaeyeong Heo

Vacuum ◽  
2007 ◽  
Vol 81 (9) ◽  
pp. 1023-1028 ◽  
Author(s):  
Jianke Yao ◽  
Jianda Shao ◽  
Hongbo He ◽  
Zhengxiu Fan

2016 ◽  
Vol 34 (4) ◽  
pp. 703-707 ◽  
Author(s):  
P. Prathiba Jeya Helan ◽  
K. Mohanraj ◽  
G. Sivakumar

AbstractThe present work describes the deposition of semiconducting Cu2SnSe3 thin films by electron beam evaporation method. The structure of the deposited films was characterized by XRD and Raman analysis. X-ray diffraction study revealed that the Cu2SnSe3 thin films had a cubic sphalerite-like structure with crystallite size of 12 nm. Raman spectrum of the thin films confirmed the phase purity. FESEM analysis showed a continuous film with polydispersed grains of a diameter less than 1 цш and the elemental composition was confirmed by EDS spectrum. The UV-Vis spectrum revealed that the sample had high absorption in the visible region and the band gap was found to be 1.15 eV. The I-V graph exhibited the electrical resistivity and conductivity of the film as 2.13 Ω-cm and 0.468 S/cm, respectively. Thus, the electron beam evaporated Cu2SnSe3 thin films showed high purity of structure and good morphological, optical and electrical properties comparable with other methods of thin film deposition.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


1995 ◽  
Vol 10 (1) ◽  
pp. 26-33 ◽  
Author(s):  
L.M. Porter ◽  
R.F. Davis ◽  
J.S. Bow ◽  
M.J. Kim ◽  
R.W. Carpenter

Thin films (4–1000 Å) of Co were deposited onto n-type 6H-SiC(0001) wafers by UHV electron beam evaporation. The chemistry, microstructure, and electrical properties were determined using x-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and I-V and C-V measurements, respectively. The as-deposited contacts exhibited excellent rectifying behavior with low ideality factors and leakage currents of n < 1.06 and 2.0 × 10−8 A/cm2 at −10 V, respectively. During annealing at 1000 °C for 2 min, significant reaction occurred resulting in the formation of CoSi and graphite. These annealed contacts exhibited ohmic-like character, which is believed to be due to defects created in the interface region.


1975 ◽  
Vol 30 (12) ◽  
pp. 1661-1666 ◽  
Author(s):  
P. J. P. De Maayer ◽  
J. D. Mackenzie

Abstract Thin films of metallically conductive titanium mononitride and carbide were prepared by means of electron beam evaporation. The composition of the samples could be changed over appreciable ranges by introducing nitrogen in the system or adding carbon to the pure starting material, respectively. The transport properties of the resulting compounds were studied as a function of nonstoichiometry and defect structure. A plausible explanation for the different behavior of the films compared to corresponding bulk samples is given and a correlation between the change in electron concentration and the electron transfer theory is presented.


Sign in / Sign up

Export Citation Format

Share Document