scholarly journals Thin layer drying models, antioxidative activity and phenolic compounds of rose petals (Rosa damascena Mill.) in tray dryer

2019 ◽  
Vol 12 (2) ◽  
pp. 141-149
Author(s):  
Nasim Pourebrahim ◽  
◽  
Amirhussein Elhamirad ◽  
Soodabeh Einafshar ◽  
Mohammad Armin ◽  
...  
2018 ◽  
Vol 12 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kamil Neyfel Çerçi ◽  
Özge Sufer

In this study, the dehydration behavior of zucchini using solar assisted drying system was examined according to 22 thin layer drying models available in literature. The correlation coefficient (R2), chi-square (χ2) and root mean square error (RMSE) values were calculated to check the suitability of models by non-linear regression analysis. It was found that Cubic and Modified Midilli-1 models were the most suitable equations and their R2 values were calculated as 0.99963. χ2 and RMSE values of related mathematical expressions were 1.89343×10‒5, 1.91692×10‒5 and 0.01685×10‒3, 0.01721×10‒3 respectively. In addition, heat transfer, mass transfer and diffusion coefficients, which were important parameters in design of drying systems were also determined as 5.18124 W/m2°C, 1.57129×10‒7 m/s and 2.335718×10‒9 m2/s respectively.


2013 ◽  
Vol 371 ◽  
pp. 323-327
Author(s):  
Miloš Vasić ◽  
Zagorka Radojević

Drying results, determined on samples made of masonry clay from the locality "Banatski Karlovac", are presented in this study. Experimental investigations were carried out in a laboratory recirculation dryer in which drying parameters (humidity, temperature, and velocity) could be programmed, controlled and monitored during drying process. Several mathematical models were used for drying process modelling. New semi-theoretical thin layer drying model, for heavy clay products, was developed and presented in this study. It represents a modification of Page's and logarithm's thin layer drying models. Results presented in this study have shown that new thin layer drying model describes and correlates the best experimentally determined drying process.


2017 ◽  
Vol 7 (2) ◽  
pp. 14 ◽  
Author(s):  
Luqman Ebow Ibn Daud ◽  
Isaac Nyambe Simate

As a means of adding value to pineapple production and minimising post-harvest losses, sliced pineapples were dried using a Solar Conduction Dryer (SCD) and appropriate thin layer drying models to predict drying were developed whilst the performance of the SCD was also investigated. For the period of the experiment, ambient temperature and temperature in the dryer ranged from 24 to 37 °C and 25 to 46 ℃ respectively. The performance of the dryer was compared to open sun drying using pineapple slices of 3-5 mm in thickness where the slices were reduced from an average moisture content of 85.42 % (w.b.) to 12.23 % (w.b.) by the SCD and to 51.51 % (w.b.) by the open sun drying in 8 hours effective drying time. Pineapple slices of thicknesses 3 mm, 5 mm, 7 mm and 10 mm were simultaneously dried in the four drying chambers of the SCD and their drying curves simulated with twelve thin layer drying models. The Middilli model was found as the best fitted thin layer drying model for sliced pineapples. The optimum fraction of drying tray area that should be loaded with pineapples was also investigated by simultaneously loading 7 mm slices of pineapples at 50, 75, and 100 percent of drying tray area. Loading the slices at 50, 75 and 100 percent of drying tray area gave overall thermal efficiencies of 23, 32 and 44 percent, respectively, hence loading pineapple slices at 100 percent drying tray area was recommended as the best.


2015 ◽  
Vol 8 (3) ◽  
pp. 169-177 ◽  
Author(s):  
Dimitrios A. Tzempelikos ◽  
Alexandros P. Vouros ◽  
Achilleas V. Bardakas ◽  
Andronikos E. Filios ◽  
Dionissios P. Margaris

1992 ◽  
Vol 16 (4) ◽  
pp. 239-249 ◽  
Author(s):  
B.K. Bala ◽  
J.L. Woods

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
Sencer Buzrul

Modeling the thin-layer drying of foods is based on describing the moisture ratio versus time data by using a suitable mathematical model or models. Several models were proposed for this purpose and almost all studies were related to the application of these models to the data, a comparison and selecting the best-fitted model. A careful inspection of the existing drying data in literature revealed that there are only a limited number of curves and, therefore, the use of some models, especially the complex ones and the ones that require a transformation of the data, should be avoided. These were listed based on evidence with the use of both synthetic and published drying data. Moreover, the use of some models were encouraged, again based on evidence. Eventually, some suggestions were given to the researchers who plan to use mathematical models for their drying studies. These will help to reduce the time of the analyses and will also avoid the arbitrary usage of the models.


Sign in / Sign up

Export Citation Format

Share Document