Study on Genetic Algorithm Concepts, Search And Optimization Techniques in Electrical Systems

2017 ◽  
Vol 10 (3) ◽  
pp. 43
Author(s):  
SAKUNTHALA S. ◽  
Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1581
Author(s):  
Alfonso Hernández ◽  
Aitor Muñoyerro ◽  
Mónica Urízar ◽  
Enrique Amezua

In this paper, an optimization procedure for path generation synthesis of the slider-crank mechanism will be presented. The proposed approach is based on a hybrid strategy, mixing local and global optimization techniques. Regarding the local optimization scheme, based on the null gradient condition, a novel methodology to solve the resulting non-linear equations is developed. The solving procedure consists of decoupling two subsystems of equations which can be solved separately and following an iterative process. In relation to the global technique, a multi-start method based on a genetic algorithm is implemented. The fitness function incorporated in the genetic algorithm will take as arguments the set of dimensional parameters of the slider-crank mechanism. Several illustrative examples will prove the validity of the proposed optimization methodology, in some cases achieving an even better result compared to mechanisms with a higher number of dimensional parameters, such as the four-bar mechanism or the Watt’s mechanism.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1392 ◽  
Author(s):  
Iram Parvez ◽  
JianJian Shen ◽  
Mehran Khan ◽  
Chuntian Cheng

The hydro generation scheduling problem has a unit commitment sub-problem which deals with start-up/shut-down costs related hydropower units. Hydro power is the only renewable energy source for many countries, so there is a need to find better methods which give optimal hydro scheduling. In this paper, the different optimization techniques like lagrange relaxation, augmented lagrange relaxation, mixed integer programming methods, heuristic methods like genetic algorithm, fuzzy logics, nonlinear approach, stochastic programming and dynamic programming techniques are discussed. The lagrange relaxation approach deals with constraints of pumped storage hydro plants and gives efficient results. Dynamic programming handles simple constraints and it is easily adaptable but its major drawback is curse of dimensionality. However, the mixed integer nonlinear programming, mixed integer linear programming, sequential lagrange and non-linear approach deals with network constraints and head sensitive cascaded hydropower plants. The stochastic programming, fuzzy logics and simulated annealing is helpful in satisfying the ramping rate, spinning reserve and power balance constraints. Genetic algorithm has the ability to obtain the results in a short interval. Fuzzy logic never needs a mathematical formulation but it is very complex. Future work is also suggested.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Fayiz Abu Khadra ◽  
Jaber Abu Qudeiri ◽  
Mohammed Alkahtani

A control methodology based on a nonlinear control algorithm and optimization technique is presented in this paper. A controller called “the robust integral of the sign of the error” (in short, RISE) is applied to control chaotic systems. The optimum RISE controller parameters are obtained via genetic algorithm optimization techniques. RISE control methodology is implemented on two chaotic systems, namely, the Duffing-Holms and Van der Pol systems. Numerical simulations showed the good performance of the optimized RISE controller in tracking task and its ability to ensure robustness with respect to bounded external disturbances.


Author(s):  
Shapour Azar ◽  
Brian J. Reynolds ◽  
Sanjay Narayanan

Abstract Engineering decision making involving multiple competing objectives relies on choosing a design solution from an optimal set of solutions. This optimal set of solutions, referred to as the Pareto set, represents the tradeoffs that exist between the competing objectives for different design solutions. Generation of this Pareto set is the main focus of multiple objective optimization. There are many methods to solve this type of problem. Some of these methods generate solutions that cannot be applied to problems with a combination of discrete and continuous variables. Often such solutions are obtained by an optimization technique that can only guarantee local Pareto solutions or is applied to convex problems. The main focus of this paper is to demonstrate two methods of using genetic algorithms to overcome these problems. The first method uses a genetic algorithm with some external modifications to handle multiple objective optimization, while the second method operates within the genetic algorithm with some significant internal modifications. The fact that the first method operates with the genetic algorithm and the second method within the genetic algorithm is the main difference between these two techniques. Each method has its strengths and weaknesses, and it is the objective of this paper to compare and contrast the two methods quantitatively as well as qualitatively. Two multiobjective design optimization examples are used for the purpose of this comparison.


Author(s):  
Indrajit Mukherjee ◽  
Pradip Kumar Ray

A typical grinding process is an essential manufacturing operation and has been considered to be a precise and economical means of shaping the parts into the final products with required surface finish and high dimensional accuracy. The need to economically process hard and tough materials which can withstand varying stress conditions to ensure prolonged service life of parts has become a real challenge for researchers and practitioners. In this context, with the advance development and automation of grinding processes, use of appropriate modelling and optimization techniques has been continually emphasized. In view different types of end product and process requirements in grinding processes, optimization often becomes non-linear, multiple response constrained problem with multi-modal distribution of response quality characteristics. The objective of this study is to apply back propagation neural network modelling technique for prediction of a computer numeric-controlled (CNC) rough grinding process behaviour, and thereby determine overall near optimal process design using real coded genetic algorithm. The study proposes an integrated approach using back propagation neural network algorithm, composite desirability function, and real-coded genetic algorithm. The effectiveness and suitability of the approach is determined based on data analysis of a single-pass 6-cylinder engine liner CNC rough grinding (honing) operation in a leading automotive manufacturing unit in India.


1998 ◽  
Vol 37 (8) ◽  
pp. 55-63 ◽  
Author(s):  
H. W. Chen ◽  
Ni-Bin Chang

Designing water quality management strategies is often complicated by the difficulty in simultaneously considering large amounts of relevant data, applicable submodels, competing objectives, unquantifiable factors, nonlinear characteristics, and uncertainty during parameterization. Mathematical optimization techniques offer promise in identifying optimal or satisfactory strategies that may be used as benchmarks for decision making. Newer optimization techniques such as genetic algorithm (GA) and fuzzy mathematical programming make the search for optimal control strategies in an uncertain environment more feasible. Using a probabilistic search procedure that emulates Darwinian natural selection, GAs allow multicriteria decision making with respect to both nonlinear feature and fuzzy characteristics to be incorporated directly into the optimization process and generate trade-off curves between cost and environmental quality while identifying good control strategies. This paper verifies such a discovery by a case study of water quality control in the Tseng-Wen river basin in Taiwan.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 139
Author(s):  
Maxinder S Kanwal ◽  
Avinash S Ramesh ◽  
Lauren A Huang

Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates.


Sign in / Sign up

Export Citation Format

Share Document