Potential application of bioactive compounds in essential oils from selected Malaysian herbs and spices as antifungal agents in food systems

Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 223-237
Author(s):  
M. Ramli ◽  
Nor-Khaizura M.A.R. ◽  
Nur Hanani Z.A. ◽  
Y. Rukayadi ◽  
N.I.P. Samsudin

Essential oils have a long history in their variety of applications. Although essential oils of various herbs and spices from other parts of the world have shown antimicrobial effects, those from Malaysian herbs remain underreported. Thus, can be further utilized in the search for novel bioactive compounds as natural antimicrobials to fulfil the consumers' demand for safer, healthier, and higher‐quality foods with longer shelf life. In the present work, the essential oils from ten herbs and spices namely betel, cinnamon, clove, coriander, galangal, ginger, lemongrass, lime, nutmeg, and turmeric, selected based on their abundance and economic importance, were analysed by gas chromatography and mass spectrometry. A total of 120 bioactive compounds were detected. The major (>10%) bioactive compounds were anethole, 26.25% (betel), cinnamaldehyde, 63.39% (cinnamon), eugenol, 87.16% (clove), linalool, 54.79% (coriander), propenoic acid, 29.56% (galangal), α-zingiberene, 26.32% (ginger), geranial, 42.61% (lemongrass), limonene, 39.84% (lime), β-phellandrene, 27.80% (nutmeg), and ar-turmerone, 41.81% (turmeric). All essential oils also yielded minor (<10%) bioactive compounds of different classes. Some of these major and minor bioactive compounds have been reported to exert fungicidal/fungistatic effects and could be an excellent candidate in the development of efficient fungal spoilage control strategies such as an active food packaging system.

RSC Advances ◽  
2015 ◽  
Vol 5 (50) ◽  
pp. 40324-40335 ◽  
Author(s):  
A. Valdés ◽  
A. C. Mellinas ◽  
M. Ramos ◽  
N. Burgos ◽  
A. Jiménez ◽  
...  

Natural additives obtained from herbs and spices are being increasingly used in the food packaging industry.


Author(s):  
Olga B. Alvarez-Pérez ◽  
Mónica L. Chávez-González ◽  
Anna Iliná ◽  
José Luis Martínez-Hernández ◽  
Elda Patricia Segura-Ceniceros ◽  
...  

Author(s):  
Muhammad Zeeshan Akram ◽  
Sema Yaman Fırıncıoğlu ◽  
Hassan Jalal ◽  
Sibel Canoğulları Doğan

Public concern on the excessive use of synthetic food additives has raised a great interest to use natural products due to their potential in food and pharmacological industries. Nowadays, chemical food additives are questioned due to their contribution to the health risks and environmental impacts. Among natural additives, essential oils (EOs) are extracted from aromatic compounds and responsible for their biological activities namely antimicrobial and antioxidant capacity. Incorporation of bio-active compounds particularly EOs directly in food or edible/biodegradable food packaging seems to enhance the shelf life and quality characteristics of processed food and protect the consumers against oxidative and bacterial deterioration effects. However, inclusion of EOs in films/coatings for food packaging may put some effects on various properties (optic, tensile and etc.), which can affect the consumer acceptability. Their addition in food can cause some allergic and hypersensitivity reactions to the individuals who use them often. This paper aims to review the latest findings on the use of EOs incorporated with edible/biodegradable films and coatings to enhance the shelf life and quality of the food. Further investigations about essential oils are expected to clarify their exact action and build up their standard use in food industry.


2021 ◽  
Author(s):  
Josemar Gonçalves de Oliveira Filho ◽  
Beatriz Regina Albiero ◽  
Lavínia Cipriano ◽  
Carmen Cris de Oliveira Nobre Bezerra ◽  
Fernanda Campos Alencar Oldoni ◽  
...  

Abstract Arrowroot starch (AA)-based films incorporated with a carnauba wax nanoemulsion (CWN), cellulose nanocrystals (CNCs), and essential oils (EOs) from Mentha spicata (MEO) and Cymbopogon martinii (CEO) were produced using the casting technique and then characterized in terms of their water barrier, tensile, thermal, optical, and microstructural properties and in vitro antifungal activity against Rhizopus stolonifer and Botrytis cinerea. Whereas the incorporation of CNCs decreased the moisture content and water vapor permeability of the AA/CWN/CNC film, the additional incorporation of either EO decreased the transparency and affected the microstructure of the AA/CWN/CNC/EO nanocomposites. MEO and CEO incorporation improved the thermal stability of the films and provided excellent protection against fruit-spoiling fungi. Because of their excellent barrier properties against fungal growth, water vapor permeability, and ultraviolet and visible light, these AA/CWN/CNC/EO films have promising potential for application as active food packaging or coating materials.


Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


2021 ◽  
Vol 5 ◽  
Author(s):  
Vandana Chaudhary ◽  
Neha Thakur ◽  
Priyanka Kajla ◽  
Shubham Thakur ◽  
Sneh Punia

Nutraceuticals, functional foods, immunity boosters, microcapsules, nanoemulsions, edible packaging, and safe food are the new progressive terms, adopted to describe the food industry. Also, the rising awareness among the consumers regarding these has created an opportunity for the food manufacturers and scientists worldwide to use food as a delivery vehicle. Packaging performs a very imminent role in the food supply chain as well as it is a consequential part of the process of food manufacturing. Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc. and other consumable constituents extracted from various non-conventional sources like microorganisms are used alone or imbibed together. These edible packaging are indispensable and are meant to be consumed with the food. This shift in paradigm from traditional food packaging to edible, environment friendly, delivery vehicles for bioactive compounds have opened new avenues for the packaging industry. Bioactive compounds imbibed in food systems are gradually degenerated, or may change their properties due to internal or external factors like oxidation reactions, or they may react with each other thus reducing their bioavailability and ultimately may result in unacceptable color or flavor. A combination of novel edible food-packaging material and innovative technologies can serve as an excellent medium to control the bioavailability of these compounds in food matrices. One promising technology for overcoming the aforesaid problems is encapsulation. It can be used as a method for entrapment of desirable flavors, probiotics, or other additives in order to apprehend the impediments of the conventional edible packaging. This review explains the concept of encapsulation by exploring various encapsulating materials and their potential role in augmenting the performance of edible coatings/films. The techniques, characteristics, applications, scope, and thrust areas for research in encapsulation are discussed in detail with focus on development of sustainable edible packaging.


2021 ◽  
pp. 323-365
Author(s):  
Yaiza Flores ◽  
Carlos Javier Pelegrín ◽  
Marina Ramos ◽  
Alfonso Jiménez ◽  
María Carmen Garrigós

Sign in / Sign up

Export Citation Format

Share Document