scholarly journals Effects of maltodextrin on physicochemical properties of freeze-dried avocado powder

Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 178-186
Author(s):  
T. Chuacharoen ◽  
J. Moolwong ◽  
T. Chyrsirichote

The effect of maltodextrin on the moisture sorption isotherm, glass transition temperature (Tg), and degree of caking of freeze-dried avocado samples at room temperature (25°C) was investigated. The incorporation of maltodextrin reduced the water sorption capacity of the powder due to its less hygroscopic nature. Parameters derived from the Guggenheim, Anderson, and de Boer (GAB) model describing the properties of absorbed water are discussed. The water absorption isotherm possessed the characteristic sigmoid-shaped type II isotherm curves and the model gave the best fit over the whole range of aw tested. The differential scanning calorimetric method was used to measure the Tg of freeze-dried avocado samples. Increasing the water content decreased the Tg, and Tg was increased with increasing maltodextrin content. Increased maltodextrin content to solid material in the freeze-dried sample was associated with less sensitivity to caking as evidenced by Tg values. In addition, increased maltodextrin content in the powders caused brighter, less yellowish, and more greenish coloration and protected color change including browning index. The antioxidant capacity was significantly decreased with increasing maltodextrin content. Thus, the effect of maltodextrin concentration on physicochemical properties was a promising way to preserve the physical property and chemical compounds in freezedried avocado powder.

2021 ◽  
Vol 11 (2) ◽  
pp. 654
Author(s):  
Ewa Jakubczyk ◽  
Aleksandra Jaskulska

The aim of this study was to investigate selected physical and biochemical properties of four vegetable freeze-dried soups. The water content, water activity, pH, color parameters, antioxidant activity (EC50), total polyphenolic content of fresh tomato, pumpkin, beetroot, and cucumber, and freeze-dried soups were measured. Sensory analysis was applied to compare sensory attributes of fresh and rehydrated soups. The sorption isotherms of freeze-dried soups were obtained with the application of the static and dynamic vapor sorption (DVS) method. The application of the freeze-drying method enabled the obtaining of dry soups with a low water content of 2–3%. The drying caused a significant change of color of all soups. The redness of soups decreased after drying for the beetroot soups from +39.64 to +21.91. The lower chroma value of 25.98 and the highest total color change ΔE*ab = 36.74 were noted for freeze-dried beetroot soup. The antioxidation activity and total polyphenolic content were reduced after drying, especially for the cucumber and tomato soups. The Peleg model was selected to describe the sorption isotherms of dried soups. The sorption isotherm of freeze-dried cucumber and beetroot soups had a sigmoidal shape of type II. The shape of the moisture sorption isotherm for freeze-dried tomato and pumpkin soups corresponded more with type III isotherms. The DVS method can be used to characterize the moisture sorption isotherms of freeze-dried products.


Author(s):  
Aslı Zungur Bastıoğlu ◽  
Safiye Nur Dirim ◽  
Figen Kaymak Ertekin

Yogurt powder was produced by freeze drying and with added candied chestnut puree at ratios of 5, 10, and 20 % by weight. Moisture sorption isotherms of yogurt powder samples, plain (YP), and containing 5, 10, 20% candied chestnut puree (CCP) were determined at 25°C using the standard, static-gravimetric method. The experimental adsorption data of yogurt powders at 25°C were fitted to 14 sorption equations which are most widely used to fit experimental sorption data of various food materials. The parameters of the sorption models were estimated from the experimental results by using the nonlinear regression analysis. The GAB model gave the closet fit to the sorption data of freeze dried yogurt powders with candied chestnut puree at 25°C. BET, Ferro Fanton, Henderson, Halsey, Oswin and Modified Oswin models are also acceptable for describing the adsorption isotherms for freeze dried yogurt with candied chestnut puree at 25°C.


Author(s):  
Wan Zunairah Wan Ibadullah ◽  
Aw Ying Hong ◽  
Mahmud Ab Rashid Nor-Khaizura ◽  
Nor Afizah Mustapha ◽  
Z. A. Nur Hanani ◽  
...  

Rice bran (RB) is a good source of dietary fibre. Addition of rice bran into croissant interferes with the gluten formation of dough and hence affect the physicochemical properties of croissant. The effect of RB addition on physicochemical properties of croissant were determined by using 0%, 10% and 15% RB. Besides, additives such as emulsifiers and enzymes can be used in pastry to enhance the physicochemical properties of croissant. Diacetyl tartaric acid ester of mono-diglycerides (DATEM) and transglutaminase (TGase) were used respectively on 0%, 10% and 15% RB to investigate the effect of such additives on physicochemical properties of croissant. Increased % RB and DATEM, produced a significant decrease in specific volume, together with a significant increase in colour, hardness and chewiness. With increased % RB, TGase caused significant increase in colour, hardness and chewiness but significant decrease in specic volume. The overall moisture sorption isotherm curves of the croissant belong to the Type III isotherm, also known as Flory-Huggins Isotherm (J-shaped). The critical aw obtained from the Guggenheim-Anderson-de Boer (GAB) equation showed that the shelf life of croissants were not positively impacted by the addition of DATEM and TGase and the addition of RB did not cause any significant positive effects on quality characteristics of croissants.


2017 ◽  
Vol 13 (1) ◽  
pp. 29 ◽  
Author(s):  
Mutiara Nur Alfiah ◽  
Sri Hartini ◽  
Margareta Novian Cahyanti

<p>This research aims to determine moisture sorption isotherm curves, moisture sorption isotherm models and thermodynamic properties of fermented cassava flour by red yeast rice. The moisture sorption isotherm model used are Guggenheim Anderson deBoer (GAB), Brunauer Emmet Teller (BET) and Caurie. Meanwhile, the test of modelling accuray by Mean Relative Deviation (MRD) and Root Mean Square Error (RMSE). The thermodynamic properties, i.e., enthalpy and entropy were calculated by Clausius - Clapeyron equation. The result shows that the moisture sorption isotherm curve on fermented cassava flour in a sigmoid form (type II). The GAB model is the best model for moisture sorption isotherm of fermented cassava flour by red yeast rice. The MRD and RMSE values at 30˚C, 35˚C and 40˚C are 3.12%, 2.71%, 3.81%, and 1.01, 0.35, 0.42, respectively. The monolayer moisture content at 30˚C, 35˚C and 40˚C are 6.61%, 6.27% and 6.91%, based on GAB model. Meanwhile, when the BET model was used, the monolayer moisture content are 4.92%, 4.86% and 5.19%, while by Caurie model are 6.37%, 6.18% and 5.30%, at 30˚C, 35˚C and 40˚C, respectively. The enthalpy and entropy of water sorption process were decreased when moisture content increased.</p>


1969 ◽  
Vol 77 (3-4) ◽  
pp. 113-128
Author(s):  
Humberto Vega-Mercado ◽  
Gustavo V. Barbosa-Cánovas

Moisture sorption isotherms of freeze-dried pineapple pulp were determined at 5, 25, 30, 35 and 55°C. Water activity were controlled by using preselected saturated salt solutions in evacuated glass desskators according to Wolf et al. (20), where micro crystalline cellulose is the reference material for the determination of sorption isotherms. The data were correlated in terms of some empirical models involving two single parameters: models of Henderson, Oswin, Chung-Pfost, Halsey, Iglesias-Chirife, and Smith. Also, the data was correlated by the Guggenheim-Anderson-deBoer (G.A.B.) model involving three adjustable parameters. It was found that the models proposed by Henderson and Iglesias-Chirife were the most useful ones in predicting water activities at different levels and at different temperatures.


Author(s):  
Kabindra Bhattarai ◽  
Babita Adhikari ◽  
Prabina Ghimire

 Stickiness and caking are the significant problems for food powders due to moisture migration from the storage environment. This study was conducted to determine the moisture sorption isotherm of weaning food (Nutrilac and Superceral) and to fit the sorption data in different sorption isotherm models. Static gravimetric method was used to determine the equilibrium moisture content (EMC) at 22-89% RH at 30°C. The EMC data obtained were plotted to the models Brunauer Emmet Teller (BET), Guggenheim Anderson and De Boer (GAB). Results indicated that sorption isotherms were of type II isotherm according to Brunauer et al., (1940) classification. BET model was fitted to the sorption data with coefficient of regression 0.985 and 0.986 for Nutrilac and Supercereal respectively. The GAB model was fitted with coefficient of regression 0.983 and 0.979 for Nutrilac and Supercereal respectively. Monolayer moisture content determined from the BET and GAB model at 30°C were 1.63 and 2.24 g/100g dry matter for Nutrilac and 1.51 and 2.26 g/100g dry matter for Supercereal respectively.


2017 ◽  
Vol 13 (1) ◽  
pp. 29 ◽  
Author(s):  
Mutiara Nur Alfiah ◽  
Sri Hartini ◽  
Margareta Novian Cahyanti

<p>This research aims to determine moisture sorption isotherm curves, moisture sorption isotherm models and thermodynamic properties of fermented cassava flour by red yeast rice. The moisture sorption isotherm model used are Guggenheim Anderson deBoer (GAB), Brunauer Emmet Teller (BET) and Caurie. Meanwhile, the test of modelling accuray by Mean Relative Deviation (MRD) and Root Mean Square Error (RMSE). The thermodynamic properties, i.e., enthalpy and entropy were calculated by Clausius - Clapeyron equation. The result shows that the moisture sorption isotherm curve on fermented cassava flour in a sigmoid form (type II). The GAB model is the best model for moisture sorption isotherm of fermented cassava flour by red yeast rice. The MRD and RMSE values at 30˚C, 35˚C and 40˚C are 3.12%, 2.71%, 3.81%, and 1.01, 0.35, 0.42, respectively. The monolayer moisture content at 30˚C, 35˚C and 40˚C are 6.61%, 6.27% and 6.91%, based on GAB model. Meanwhile, when the BET model was used, the monolayer moisture content are 4.92%, 4.86% and 5.19%, while by Caurie model are 6.37%, 6.18% and 5.30%, at 30˚C, 35˚C and 40˚C, respectively. The enthalpy and entropy of water sorption process were decreased when moisture content increased.</p>


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 303 ◽  
Author(s):  
Catherine Bourgault ◽  
Paul Lessard ◽  
Claire Remington ◽  
Caetano C. Dorea

Dewatering and drying of fecal sludge (FS) is a key treatment objective in fecal sludge management as it reduces volume (thereby reducing emptying frequency and associated transportation costs), inactivates pathogens, and is beneficial and/or necessary to resource recovery activities such as composting and combustion as fuel. However, studies on dewatering performances of FS are limited. The physical water distribution of such matrices is not fully understood, limiting the progress in the development and optimization of FS dewatering technologies. The objective of this study is to present a gravimetric method intended to assess the dewatering characteristics and associated modelling of FS through moisture sorption isotherms. Samples were placed in airtight jars containing different saturated salt (NaOH, CaCl2, NaCl, KCl, K2SO4) solutions to reproduce a range of relative humidity values (6 to 97%). Results confirmed the achievement of characteristic sigma-shaped moisture sorption isotherms with increasing moisture adsorption at higher values of relative humidity. Furthermore, experimental data best fit the three-parameter Guggenheim–Anderson–de Boer (GAB) model. This method can be replicated to contribute critical data about the characterization of fecal sludge, a seriously under-researched matrix.


Sign in / Sign up

Export Citation Format

Share Document