scholarly journals Assessment Land Cover Change Using Normalized Difference Water Index (NDWI) In Bakun Reservoir, Sarawak

Author(s):  

The location of Sarawak State in the equatorial region makes it an area of high rainfall. For this reason, hydroelectric power plants have been built in several catchments in Sarawak, especially in the Kapit area. This needs to be harnessed to improve the economy and social living standards of the people of Sarawak in particular. This paper presents the land cover change by analyzing the stratification change for 30 years (1985-2018) at Bakun Dam, Sarawak. This study uses Landsat 5 and Landsat 8 satellite data. Both data have to go through pre-processing such as geometric, radiometric, and atmospheric corrections. In this study, Normalized Water Difference Index (NDWI) is used to classify water areas, built human areas, and vegetation areas. Overlay analysis was applied to identify areas that had changed over the 30 years in the study area. The results showed the greatest changes from vegetation areas to water bodies for 30 years. The results showed that the most affected land cover was forest cover with a reduction of 740 km², which shifted mainly to water bodies with 669.9 km² and human development with an area of 68.7 km². The study area is less populated and anthropogenic influences are rather low, but deforestation is observed in the upper river basin. These events would change the hydrological behavior of these catchments in the future. Land cover mapping is very important to provide information to those responsible for planning sustainable development. In addition, land cover maps are important for land use planning and land use regulation to avoid land-use conflicts.

2021 ◽  
Vol 6 (3) ◽  
pp. 320-328
Author(s):  
Suraj Prasad Bist ◽  
Rabindra Adhikari ◽  
Raju Raj Regmi ◽  
Rajan Subedi

The present study was conducted in the Mohana watershed of Far-western Nepal to assess land use land cover change. The study has used ArcGIS and three Landsat images - Landsat TM (1999), Landsat ETM+ (2009), and Landsat OLI (2019) – to analyze land use the land cover change of the watershed. The change matrix technique was used for change detection analysis. The study area was classified into five classes; forest, agriculture, built-up, water bodies, and barren lands. The study has found that among the five identified classes forest and build-up increased positively from 45.40 % to 51.51 % - forest cover and 11.26 % to 19. 85 % - build-up respectively. Similarly, agricultural land and water bodies initially increased but after 2009 both land cover areas decreased to 23.79 % and 0.73 % from 31.38 % and 0.97 % in 2009 respectively. Barren land decreased from 15.37% to 4.12% over the last 20 years. This study might support land-use planners and policymakers to adopt the best suitable land use management option for the Mohana watershed.


2021 ◽  
Author(s):  
Nigus Tekleselassie Tsegaye

Abstract Background: Land use and land cover change is driven by human actions and also drives changes that limit availability of products and services for human and livestock, and it can undermine environmental health as well. Therefore, this study was aimed at understanding land use and land cover change in Kersa district over the last 30 years. Time-series satellite images that included Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI/TIRS, which covered the time frame between 1990-2020, were used to determine the change in land use and land cover using object based classification.Results: The object based classification result revealed that in 1990 TM Landsat imagery, natural forest (16.07%), agroforestry (9.21%), village (12.03%), urban (1.93%), and agriculture (60.76%) were identified. The change result showed a rapid reduction in natural forest cover of 25.04%, 9.15%, and 23.11% occurred between (1990-2000), (2000-2010), and (2010-2020) study periods, respectively. Similarly agroforestry decreased by 0.88% and 63.9% (2000-2010) and (2010-2020), respectively. The finding indicates the increment of agricultural land, village, and urban, while the natural forest and agroforestry cover shows a declining trend.Conclusions: The finding implies that there was a rapid land use and land cover change in the study area. This resulted in loss of natural resource and biodiversity. Overall, proper and integrated approach in implementing policies and strategies related to land use and land cover management should be required in kersa district.


Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


Nativa ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 520
Author(s):  
Luani Rosa de Oliveira Piva ◽  
Rorai Pereira Martins Neto

Nos últimos anos, a intensificação das atividades antrópicas modificadoras da cobertura vegetal do solo em território brasileiro vem ocorrendo em larga escala. Para fins de monitoramento das alterações da cobertura florestal, as técnicas de Sensoriamento Remoto da vegetação são ferramentas imprescindíveis, principalmente em áreas extensas e de difícil acesso, como é o caso da Amazônia brasileira. Neste sentido, objetivou-se com este trabalho identificar as mudanças no uso e cobertura do solo no período de 20 anos nos municípios de Aripuanã e Rondolândia, Noroeste do Mato Grosso, visando quantificar as áreas efetivas que sofreram alterações. Para tal, foram utilizadas técnicas de classificação digital de imagens Landsat 5 TM e Landsat 8 OLI em três diferentes datas (1995, 2005 e 2015) e, posteriormente, realizada a detecção de mudanças para o uso e cobertura do solo. A classificação digital apresentou resultados excelentes, com índice Kappa acima de 0,80 para os mapas gerados, indicando ser uma ferramenta potencial para o uso e cobertura do solo. Os resultados denotaram uma conversão de áreas florestais principalmente para atividades antrópicas agrícolas, na ordem de 472 km², o que representa uma perda de 1,3% de superfície de floresta amazônica na região de estudo.Palavras-chave: conversão de áreas florestais; uso e cobertura do solo; classificação digital; análise multitemporal. CHANGE IN FOREST COVER OF THE NORTHWEST REGION OF AMAZON IN MATO GROSSO STATE ABSTRACT: In the past few years, the intensification of anthropic activities that modify the soil-vegetation cover in Brazil’s land has been occurring on a large scale. To monitor the forest cover changes, the techniques of Remote Sensing of vegetation are essential tools, especially in large areas and with difficult access, as is the case of the Brazilian Amazon. The aim of this work was to identify the changes in land use and land cover, over the past 20 years, in the municipalities of Aripuanã and Rondolândia, Northwest of Mato Grosso State, in order to quantify the effective altered areas. Landsat 5 TM and Landsat 8 OLI digital classification images techniques were used in three different dates (1995, 2005 and 2015) and, later, the detection to the land use and land cover changes. The digital classification showed excellent results, with kappa index above 0.80 for the generated maps, indicating the digital classification as a potential tool for land use and land cover. Results reflect the conversion of forest areas mainly for agricultural activities, in the order of 472 km², representing a loss of 1.3% of Amazon forest surface in the study region.Keywords: forest conversion; land use and land cover; digital classification; multitemporal analysis.


2019 ◽  
Vol 10 (3) ◽  
pp. 212-235
Author(s):  
Fabiana da Silva Pereira ◽  
Ima Célia Guimarães Vieira

The objective of this paper was to evaluate the degree of anthropic transformation of a river basin in the Amazon region. We used the digital data of the TerraClass Project to calculate the Anthropic Transformation Index - ATI. In order to verify spatial and temporal changes along a decade in the Gurupi river basin, we used the database of the years 2004 and 2014. The results showed an increase of anthropic changes in the basin over a decade, as a result of forest cover conversion into agricultural and pastures areas. Although the Gurupi river basin remains at a regular level of degradation after a decade, the intensification of land use and land cover change is a threat to the few rainforest remnants of the river basin, which can lead the region to the next level of degradation, if effective forest protection, conservation and restoration actions are not implemented in the region.  


2019 ◽  
Vol 11 (5) ◽  
pp. 1313 ◽  
Author(s):  
Evidence Enoguanbhor ◽  
Florian Gollnow ◽  
Jonas Nielsen ◽  
Tobia Lakes ◽  
Blake Walker

Rapid urban expansion is a significant contributor to land cover change and poses a challenge to environmental sustainability, particularly in less developed countries. Insufficient data about urban expansion hinders effective land use planning. Therefore, a high need to collect, process, and disseminate land cover data exists. This study focuses on urban land cover change detection using Geographic Information Systems and remote sensing methods to produce baseline information in support for land use planning. We applied a supervised classification of land cover of LANDSAT data from 1987, 2002, and 2017. We mapped land cover transitions from 1987 to 2017 and computed the net land cover change during this time. Finally, we analyzed the mismatches between the past and current urban land cover and land use plans and quantified the non-urban development area lost to urban/built-up. Our results indicated an increase in urban/built-up and bare land cover types, while vegetation land cover decreased. We observed mismatches between past/current land cover and the existing land use plan. By providing detailed insights into mismatches between the regional land use plan and unregulated urban expansion, this study provides important information for a critical debate on the role and effectiveness of land use planning for environmental sustainability and sustainable urban development, particularly in less developed countries.


2021 ◽  
Author(s):  
Nde Samuel Che ◽  
Sammy Bett ◽  
Enyioma Chimaijem Okpara ◽  
Peter Oluwadamilare Olagbaju ◽  
Omolola Esther Fayemi ◽  
...  

The degradation of surface water by anthropogenic activities is a global phenomenon. Surface water in the upper Crocodile River has been deteriorating over the past few decades by increased anthropogenic land use and land cover changes as areas of non-point sources of contamination. This study aimed to assess the spatial variation of physicochemical parameters and potentially toxic elements (PTEs) contamination in the Crocodile River influenced by land use and land cover change. 12 surface water samplings were collected every quarter from April 2017 to July 2018 and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). Landsat and Spot images for the period of 1999–2009 - 2018 were used for land use and land cover change detection for the upper Crocodile River catchment. Supervised approach with maximum likelihood classifier was used for the classification and generation of LULC maps for the selected periods. The results of the surface water concentrations of PTEs in the river are presented in order of abundance from Mn in October 2017 (0.34 mg/L), followed by Cu in July 2017 (0,21 mg/L), Fe in April 2017 (0,07 mg/L), Al in July 2017 (0.07 mg/L), while Zn in April 2017, October 2017 and April 2018 (0.05 mg/L). The concentrations of PTEs from water analysis reveal that Al, (0.04 mg/L), Mn (0.19 mg/L) and Fe (0.14 mg/L) exceeded the stipulated permissible threshold limit of DWAF (< 0.005 mg/L, 0.18 mg/L and 0.1 mg/L) respectively for aquatic environments. The values for Mn (0.19 mg/L) exceeded the permissible threshold limit of the US-EPA of 0.05 compromising the water quality trait expected to be good. Seasonal analysis of the PTEs concentrations in the river was significant (p > 0.05) between the wet season and the dry season. The spatial distribution of physicochemical parameters and PTEs were strongly correlated (p > 0.05) being influenced by different land use type along the river. Analysis of change detection suggests that; grassland, cropland and water bodies exhibited an increase of 26 612, 17 578 and 1 411 ha respectively, with land cover change of 23.42%, 15.05% and 1.18% respectively spanning from 1999 to 2018. Bare land and built-up declined from 1999 to 2018, with a net change of - 42 938 and − 2 663 ha respectively witnessing a land cover change of −36.81% and − 2.29% respectively from 1999 to 2018. In terms of the area under each land use and land cover change category observed within the chosen period, most significant annual change was observed in cropland (2.2%) between 1999 to 2009. Water bodies also increased by 0.1% between 1999 to 2009 and 2009 to 2018 respectively. Built-up and grassland witness an annual change rate in land use and land cover change category only between 2009 to 2018 of 0.1% and 2.7% respectively. This underscores a massive transformation driven by anthropogenic activities given rise to environmental issues in the Crocodile River catchment.


2020 ◽  
Vol 14 (5) ◽  
pp. 1734-1751
Author(s):  
Kossi Adjonou ◽  
Issa Adbou-Kérim Bindaoudou ◽  
Kossi Novinyo Segla ◽  
Rodrigue Idohou ◽  
Kolawole Valère Salako ◽  
...  

The Mono Transboundary Biosphere Reserve (RBTM) has significant resources but faces many threats that lead to habitat fragmentation and reduction of ecosystem services. This study, based on satellite image analysis and processing, was carried out to establish the baseline of land cover and land use status and to analyze their dynamics over the period 1986 to 2015. The baseline of land cover established six categories of land use including wetlands (45.11%), mosaic crops/fallow (25.99%), savannas (17.04%), plantation (5.50%), agglomeration/bare soil (4.38%) and dense forest (1.98%). The analysis of land use dynamics showed a regression for wetlands (-23%), savannas (-16.06%) and dense forest (-7.60%). On the contrary, occupations such as mosaic crops/fallow land, urban agglomerations/bare soil and plantation increase in area estimated at respectively 128.64%, 93.94% and 45.23%. These results are of interest to stakeholders who assess decisions affecting the use of natural resources and provide environmental information essential for applications ranging from land-use planning, forest cover monitoring and the production of environmental statistics.Keywords: Land use, baseline, spatial dynamics, environmental statistics, ecological monitoring.


2018 ◽  
Vol 2 (2) ◽  
pp. 195
Author(s):  
Alfin Murtadho ◽  
Siti Wulandari ◽  
Muhammad Wahid ◽  
Ernan Rustiadi

<p class="ISI-Paragraf">Jabodetabek and Bandung Raya metropolitan region experienced an urban expansion phenomenon that caused the two metropolitan regions to become increasingly connected by a corridor and form a mega-urban region caused by the conurbation process. Purwakarta regency is one of the regions in Jakarta-Bandung corridor that experienced the impact of Jakarta-Bandung conurbation process. This study aims to analyze the level of regional development, to analyze land cover change that occurred, and to predict Purwakarta Regency land use/land cover in 2030. Regional development analysis is done by using the Scalogram method based on Potential Village data of year 2003 and 2014. Land cover change analysis is done through spatial analysis by overlaying land cover Landsat Satellite Image of year 2000 and 2015. Land use/land cover prediction in 2030 is conducted through spatial modelling of Cellular Automata Markov method. Purwakarta Regency experienced an increase in regional development within the period of 11 years (2003 to 2014), which is marked by a decrease in the percentage of the number of villages that are in hierarchy III and increase in the percentage of the number of villages that are in hierarchy II and I. In general, within 15 years (2000 to 2015) Purwakarta Regency has increasing number of built-up area and mixed gardens, meanwhile dry land, forest, paddy field, and water bodies tend to decrease. The results of CA Markov analysis show that the built-up area is predicted to continue to increase from 2000 to 2030, meanwhile paddy fields and water bodies will continue to decrease.</p>


2021 ◽  
Vol 889 (1) ◽  
pp. 012046
Author(s):  
Ashangbam Inaoba Singh ◽  
Kanwarpreet Singh

Abstract Rapid urbanization has dramatically altered land use and land cover (LULC). The focus of this research is on the examination of the last two decades. The research was conducted in the Chandel district of Manipur, India. The LULC of Chandel (encompassing a 3313 km2 geographical area) was mapped using remotely sensed images from LANDSAT4-5, LANDSAT 7 ETM+, and LANDSAT 8 (OLI) to focus on spatial and temporal trends between years 2000 and 2021. The LULC maps with six major classifications viz., Thickly Vegetated Area (TVA), Sparsely Vegetated Area (SVA), Agriculture Area (AA), Population Area (PA), Water Bodies (WB), and Barren Area (BA) of the were generated using supervised classification approach. For the image classification procedure, interactive supervised classification is adopted to calculate the area percentage. The results interpreted that the TVA covers approximately 65% of the total mapped area in year 2002, which has been decreased up to 60% in 2007, 56% in 2011, 55 % in 2017, and 52% in 2021. The populated area also increases significantly in these two decades. The change and increase in the PA has been observed from year 2000 (8%) to 2021 (11%). Water Bodies remain same throughout the study period. Deforestation occurs as a result of the rapid rise of the population and the extension of the territory.


Sign in / Sign up

Export Citation Format

Share Document