COMPARISON BETWEEN PENNES AND DUAL PHASE LAG MODELS FOR THE BIOHEAT TRANSFER AROUND A HEALTHY AND A TUMOROUS THYROID

Author(s):  
Tiago Pereira da Costa Bittencourt ◽  
BERNARD LAMIEN ◽  
Leonardo Antonio Bermeo Varon ◽  
Helcio Orlande
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


2018 ◽  
Vol 10 (10) ◽  
pp. 1850108 ◽  
Author(s):  
Mohamed Abdelsabour Fahmy

The main aim of this paper is to propose a new boundary element algorithm for describing thermomechanical interactions in anisotropic soft tissues. The governing equations are studied based on the dual-phase lag bioheat transfer and Biot’s theory. Due to the advantages of convolution quadrature boundary element method (CQBEM), such as low CPU usage, low memory usage and suitability for treatment of soft tissues that have complex shapes, it is a versatile and powerful method for modeling of bioheat distribution in anisotropic soft tissues and the related deformation. The resulting linear systems for bioheat and mechanical equations are solved by Transpose-free quasi-minimal residual (TFQMR) solver with a dual-threshold incomplete LU factorization technique (ILUT) preconditioner that reduces the iterations number and total CPU time. Numerical results demonstrate the validity, efficiency and accuracy of the proposed algorithm and technique.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
M. A. Castro ◽  
J. A. Martín ◽  
F. Rodríguez

The stability properties of a numerical method for the dual-phase-lag (DPL) equation are analyzed. The DPL equation has been increasingly used to model micro- and nanoscale heat conduction in engineering and bioheat transfer problems. A discretization method for the DPL equation that could yield efficient numerical solutions of 3D problems has been previously proposed, but its stability properties were only suggested by numerical experiments. In this work, the amplification matrix of the method is analyzed, and it is shown that its powers are uniformly bounded. As a result, the unconditional stability of the method is established.


2011 ◽  
Vol 15 (suppl. 1) ◽  
pp. 61-67 ◽  
Author(s):  
Kuo-Chi Liu ◽  
Po-Jen Cheng ◽  
Yan-Nan Wang

This paper studies the effect of micro-structural interaction on bioheat transfer in skin, which was stratified into epidermis, dermis, and subcutaneous. A modified non-Fourier equation of bio-heat transfer was developed based on the second-order Taylor expansion of dual-phase-lag model and can be simplified as the bio-heat transfer equations derived from Pennes? model, thermal wave model, and the linearized form of dual-phase-lag model. It is a fourth order partial differential equation, and the boundary conditions at the interface between two adjacent layers become complicated. There are mathematical difficulties in dealing with such a problem. A hybrid numerical scheme is extended to solve the present problem. The numerical results are in a good agreement with the contents of open literature. It evidences the rationality and reliability of the present results.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2254
Author(s):  
Hari Mohan Srivastava ◽  
Mohd. Irfan ◽  
Firdous A. Shah

In this article, a novel wavelet collocation method based on Fibonacci wavelets is proposed to solve the dual-phase-lag (DPL) bioheat transfer model in multilayer skin tissues during hyperthermia treatment. Firstly, the Fibonacci polynomials and the corresponding wavelets along with their fundamental properties are briefly studied. Secondly, the operational matrices of integration for the Fibonacci wavelets are built by following the celebrated approach of Chen and Haiso. Thirdly, the proposed method is utilized to reduce the underlying DPL model into a system of algebraic equations, which has been solved using the Newton iteration method. Towards the culmination, the effect of different parameters including the tissue-wall temperature, time-lag due to heat flux, time-lag due to temperature gradient, blood perfusion, metabolic heat generation, heat loss due to diffusion of water, and boundary conditions of various kinds on multilayer skin tissues during hyperthermia treatment are briefly presented and all the outcomes are portrayed graphically.


2017 ◽  
Vol 379 ◽  
pp. 108-123
Author(s):  
Ewa Majchrzak ◽  
Marek Jasiński ◽  
Łukasz Turchan

Thermal processes occurring in soft tissues are subjected to laser irradiation are analyzed. The transient bioheat transfer is described by the generalized dual-phase lag model. This model consists of two coupled equations concerning the tissue and blood temperatures supplemented by the appropriate boundary and initial conditions. The efficiency of the internal heat source connected to the laser irradiation results from the solution of the diffusion equation. This approach is acceptable when the scattering dominates over the absorption for wavelengths between 650 and 1300 nm, and just such a situation occurs in the case of soft tissues. Sensitivity analysis with respect to the parameters occurring in the mathematical model is done using the direct approach (differentiation of the basic equations and the boundary-initial conditions with respect to the parameter considered), especially the absorption coefficient and scattering coefficient of the soft tissue are considered. At the stage of numerical modeling the basic problem and additional problems connected with the sensitivity functions are solved using the finite difference method. In the final part the conclusions and examples of computations are presented.


Sign in / Sign up

Export Citation Format

Share Document