EXERGETIC ANALYSIS OF A CHEMICAL RECOVERY BOILER IN THE PULP AND PAPER INDUSTRY

Author(s):  
Magno Salgado ◽  
Vinícius Trindade ◽  
Rogério José Silva
Fuel ◽  
2001 ◽  
Vol 80 (7) ◽  
pp. 987-999 ◽  
Author(s):  
P. Mikkanen ◽  
J.K. Jokiniemi ◽  
E.I. Kauppinen ◽  
E.K. Vakkilainen

TAPPI Journal ◽  
2021 ◽  
Vol 20 (10) ◽  
pp. 655-662
Author(s):  
FLAVIO PAOLIELLO

Several reports of accidents involving serious mechanical failures of sootblower lances in chemical recovery boilers are known in the pulp and paper industry. These accidents mainly consisted of detachment and ejection of the lance tip, or even of the entire lance, to the inside of the furnace, towards the opposite wall. At least one of these cases known to the author resulted in a smelt-water explosion in the boiler. In other events, appreciable damage or near-miss conditions have already been experienced. The risk of catastrophic consequences of the eventual detachment of the lance tip or the complete lance of a recovery boiler soot-blower has caught the attention of manufacturers, who have adjusted their quality procedures, but this risk also needs to be carefully considered by the technical staff at pulp mills and in industry committees. This paper briefly describes the failure mechanisms that prevailed in past accidents, while recommending inspection and quality control policies to be applied in order to prevent further occurrences of these dangerous and costly component failures. Digital radiography, in conjunction with other well known inspection techniques, appears to be an effective means to ensure the integrity of sootblower lances in chemical recovery boilers used in the pulp and paper industry.


Author(s):  
Matthias Kuba ◽  
Florian Benedikt ◽  
Katharina Fürsatz ◽  
Josef Fuchs ◽  
Martin Demuth ◽  
...  

AbstractThe pulp and paper industry represents an industry sector which is characterised by its already high degree of sustainability. Biomass is a renewable input material, and typically highly developed recovery cycles minimise the loss of chemicals used in the pulping process. However, certain parts of the recovery cycle are still operated on fossil fuels. This study deals with the substitution of the fossil-based gaseous fuel with product gas from biomass gasification.Gasification experiments have shown that bark available at pulp and paper mills is suitable to produce a product gas via dual fluidised bed steam gasification as a promising substitute for natural gas. Based on the comparison of process layouts regarding the separation of non-process elements, separation efficiency is derived for different setups. To ensure operational security of the chemical recovery cycle, comprehensive gas cleaning including heat exchangers, a particle filter, and a liquid scrubber unit is advised. The gas flow of fuel gas into the gas burner is increased as the heating value of the product gas is accordingly lower in comparison to natural gas. Furthermore, adaptions of the gas burner might be necessary to address the earlier ignition of the H2-rich product gas compared to natural gas.


1994 ◽  
Vol 30 (3) ◽  
pp. 209-215 ◽  
Author(s):  
P. K. Gupta

The agro-residue based pulp and paper industry generates high strength and high volume wastewaters, which in the absence of techno-economically viable chemical recovery systems and cost-effective pollution control systems pollute the recipient environment. The use of the “end of pipe” treatment approach results in a complex wastewater system and imposes a very high economic burden on these units. A more pertinent approach is to incorporate “at source” pollution prevention measures prior to the design of the end-of-pipe wastewater treatment facility. This cleaner production/waste minimisation approach not only results in direct financial returns in the form of material conservation and recovery/reuse of fibres but also reduces the overall investment and annual operational costs of the subsequent wastewater treatment system. Studies at four paper mills where appropriate technologies for waste reduction and handling, and energy conservation have been demonstrated and implemented, are presented. The paper highlights the various in plant measures viz. process modification and recovery/recycle/reuse of resources, which can be used to reduce the total pollution load. These measures lead to increases in profit margin of up to 20% and reduced wastewater treatment costs of up to 30%. To illustrate this approach, a case study in a 25 TPD mill has been discussed.


2020 ◽  
Vol 35 (2) ◽  
pp. 215-230 ◽  
Author(s):  
Essam S. Abd El-Sayed ◽  
Mohamed El-Sakhawy ◽  
Mohamed Abdel-Monem El-Sakhawy

AbstractPulp and paper industry in the world have been growing fast. As a result, there has been a massive request for pulp and paper raw materials. The raw materials used in papermaking can be classified into three groups: wood, non-wood, and recycled wastepaper. The Non-wood raw material is an important fiber resource in the regions where forest resources are limited. The current usage of non-wood plant fibers, as rice straws, corn stalks, cotton stalks, and bagasse would play a chief role in increasing papermaking raw materials. Using of non-wood plant fibers in the paper industry associated with some problems, including collection, transportation, storage and handling, washing, bleaching, papermaking, chemical recovery, supply of raw material and the properties of finished paper. Recently, a high-tech innovation in all the fields of papermaking has made non-wood more reasonable with wood as a raw material for papermaking. Although till now, use of non-wood fibers for pulp and paper manufacture was focused in countries with limited wood supply, it is now showing a growing effort even in countries with acceptable wood source due to environmental concerns. Consequently, the future of non-wood plant fibers as pulping and papermaking raw material looks bright.


Holzforschung ◽  
2001 ◽  
Vol 55 (2) ◽  
pp. 219-224 ◽  
Author(s):  
A. L. Hammett ◽  
Robert L. Youngs ◽  
Xiufang Sun ◽  
Mudit Chandra

Summary The pulp and paper industry in China has been growing rapidly as the nation's population and economy have grown. As a result, there has been a huge demand for pulp and paper raw materials. China has a long tradition for using non-wood raw materials for pulp and paper due to its limited forest resources and rich supply of agricultural residues and non-wood plants. Agricultural residues, such as rice straw and wheat straw, are traditional raw materials for China's paper industry. Massive plantation of bamboo provides an increasingly important source of raw material for pulp and paper. Problems with non-wood fiber include collection and transportation, storage and handling, washing, bleaching, papermaking, and chemical recovery. Small mills, primary users of non-wood fiber, are typically deficient in pollution control and subject to government closure. This paper reviews non-wood fibers commonly used in China's pulp and paper industry. By increased knowledge of use of non-wood fibers, wood suppliers can plan for access to the growing Chinese market.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Puneet Pathak ◽  
Chhavi Sharma

Abstract The pulp and paper industry is a highly energy-intensive and water-consuming industry. This industry is known for the utilization of a wide range of raw materials, containing cellulose fibers (generally wood, recycled paper, and agricultural residues), for the production of various grades of paper. There are several processes involved in the conversion of raw materials to the paper product such as raw material preparation, pulping, pulp washing and screening, bleaching, stock preparation, papermaking and chemical recovery. All the processes are facing issues regarding process efficiency, product quality, energy & water consumption, and cost and environment. There is a need for further improvement and upgrading the technologies but the scale of operations, technological obsolesce and cost of implementing new technologies are some of the major issues. The main thrust areas of pulp and paper processing require major interventions in the adoption of green and clean technologies.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 19-24
Author(s):  
TROY RUNGE ◽  
CHUNHUI ZHANG

Agricultural residues and energy crops are promising resources that can be utilized in the pulp and paper industry. This study examines the potential of co-cooking nonwood materials with hardwoods as means to incorporate nonwood material into a paper furnish. Specifically, miscanthus, switchgrass, and corn stover were substituted for poplar hardwood chips in the amounts of 10 wt %, 20 wt %, and 30 wt %, and the blends were subjected to kraft pulping experiments. The pulps were then bleached with an OD(EP)D sequence and then refined and formed into handsheets to characterize their physical properties. Surprisingly, all three co-cooked pulps showed improved strength properties (up to 35%). Sugar measurement of the pulps by high-performance liquid chromatography suggested that the strength increase correlated with enriched xylan content.


Sign in / Sign up

Export Citation Format

Share Document