scholarly journals Recombinant Antimicrobial Peptide Fusion Between Crotalicidin Fragment Tag and Bacteriophage Endolysin T5 as a Potential Antibacterial Agent Against Multidrug Resistant Gram-Negative Bacteria: A Research Protocol

2021 ◽  
Vol 5 (9) ◽  
pp. 1-8
Author(s):  
Alex Huynh ◽  
Dalraj Dhillon ◽  
Dhairya Bhatt ◽  
Eric Zhang
2020 ◽  
Vol 21 (17) ◽  
pp. 6174
Author(s):  
Ana Gomes ◽  
Lucinda J. Bessa ◽  
Patrícia Correia ◽  
Iva Fernandes ◽  
Ricardo Ferraz ◽  
...  

A covalent conjugate between an antibacterial ionic liquid and an antimicrobial peptide was produced via “click” chemistry, and found to retain the parent peptide’s activity against multidrug-resistant clinical isolates of Gram-negative bacteria, and antibiofilm action on a resistant clinical isolate of Klebsiella pneumoniae, while exhibiting much improved stability towards tyrosinase-mediated modifications. This unprecedented communication is a prelude for the promise held by ionic liquids -based approaches as tools to improve the action of bioactive peptides.


2016 ◽  
Vol 1 (11) ◽  
Author(s):  
Shu J. Lam ◽  
Neil M. O'Brien-Simpson ◽  
Namfon Pantarat ◽  
Adrian Sulistio ◽  
Edgar H. H. Wong ◽  
...  

2021 ◽  
Author(s):  
Xukai Jiang ◽  
Nitin A. Patil ◽  
Mohammad A. K. Azad ◽  
Hasini Wickremasinghe ◽  
Heidi Yu ◽  
...  

Multidrug-resistant Gram-negative bacteria have been an urgent threat to global public health. Novel antibiotics are desperately needed to combat these 'superbugs'.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 695
Author(s):  
Estelle J. Ramchuran ◽  
Isabel Pérez-Guillén ◽  
Linda A. Bester ◽  
René Khan ◽  
Fernando Albericio ◽  
...  

Microbial infections are a major public health concern. Antimicrobial peptides (AMPs) have been demonstrated to be a plausible alternative to the current arsenal of drugs that has become inefficient due to multidrug resistance. Herein we describe a new AMP family, namely the super-cationic peptide dendrimers (SCPDs). Although all members of the series exert some antibacterial activity, we propose that special attention should be given to (KLK)2KLLKLL-NH2 (G1KLK-L2KL2), which shows selectivity for Gram-negative bacteria and virtually no cytotoxicity in HepG2 and HEK293. These results reinforce the validity of the SCPD family as a valuable class of AMP and support G1KLK-L2KL2 as a strong lead candidate for the future development of an antibacterial agent against Gram-negative bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 340
Author(s):  
Raquel Bandeira da Silva ◽  
Mauro José Salles

Gram-negative bacteria (GNB), including multidrug-resistant (MDR) pathogens, are gaining importance in the aetiology of prosthetic joint infection (PJI). This retrospective observational study identified independent risk factors (RFs) associated with MDR-GNB PJI and their influence on treatment outcomes. We assessed MDR bacteria causing hip and knee PJIs diagnosed at a Brazilian tertiary hospital from January 2014 to July 2018. RFs associated with MDR-GNB PJI were estimated by bivariate and multivariate analyses using prevalence ratios (PRs) with significance at p < 0.05. Kaplan–Meier analysis was performed to evaluate treatment outcomes. Overall, 98 PJI patients were analysed, including 56 with MDR-GNB and 42 with other bacteria. Independent RFs associated with MDR-GNB PJI were revision arthroplasty (p = 0.002), postoperative hematoma (p < 0.001), previous orthopaedic infection (p = 0.002) and early infection (p = 0.001). Extensively drug-resistant GNB (p = 0.044) and comorbidities (p = 0.044) were independently associated with MDR-GNB PJI treatment failure. In sum, MDR-GNB PJI was independently associated with previous orthopaedic surgery, postoperative local complications and pre-existing infections and was possibly related to selective pressure on bacterial skin colonisation by antibiotics prescribed for early PJI. Infections due to MDR-GNB and comorbidities were associated with higher treatment failure rates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shira Mandel ◽  
Janna Michaeli ◽  
Noa Nur ◽  
Isabelle Erbetti ◽  
Jonathan Zazoun ◽  
...  

AbstractNew antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S457-S457
Author(s):  
Henry Pablo Lopes Campos e Reis ◽  
Ana Beatriz Ferreira Rodrigues ◽  
Julio César Castro Silva ◽  
Lia Pinheiro de Lima ◽  
Talita Lima Quinaher ◽  
...  

Abstract Background Enterobacteria and multidrug-resistant non-fermenting Gram-negative bacilli present a challenge in the management of invasive infections, leading to mortality rates due to their limited therapeutic arsenal. The objective of this work was to analyze risk factors that may be associated with these infections, for a better situational mapping and assertive decision-making in a university hospital in Brazil. Methods The study was conducted between January and September 2019, with 167 patients in contact isolation at a university hospital in Brazil. Potential outcome-related variables for wide-resistance Gram-negative bacteria (BGN) infections were evaluated. Risk factors were identified from univariate statistical analysis using Fisher’s test. Results 51 (30.5%) out of 167 patients in contact isolation evolved with wide-resistance BGN infection. Risk factors in univariate analysis were age, hospital unit and previous use of invasive devices. Patients aged up to 59 years were more likely to progress to infection than those aged over 60 years (p 0.0274, OR 2.2, 95% CI 1.1-4.5). Those admitted to the oncohematology (p &lt; 0.001, OR 32.5, Cl 9.1-116.3) and intensive care unit (p &lt; 0.001, OR 28.0, Cl 3.5-225.9) units were more likely to develop this type of infection. The least likely were those admitted to a kidney transplant unit (p 0.0034, OR 15.33, Cl 1.8-131.0). Prior use of mechanical ventilation (p 0.0058, OR 12.2, Cl 2.0-76.1) and delayed bladder catheter (p 0.0266, OR 5.0, Cl 1.2-20.1) in patients with respiratory and urinary tract infection, respectively, were also reported as risk factors related to these infections. The gender of the patients was not significant for the study. Conclusion This study determined that variables such as age, hospitalization unit, use of mechanical ventilation and delayed bladder catheter could be considered important risk factors in triggering the infectious process by wide-resistant gram-negative bacteria. Thus, the analysis of these factors becomes a great foundation to prevent the development of multiresistant pathogens through prevention strategies, prophylaxis management and more targeted empirical therapies. Disclosures All Authors: No reported disclosures


2014 ◽  
Vol 35 (9) ◽  
pp. 1203-1204
Author(s):  
Enrico Schalk ◽  
Jacqueline Färber ◽  
Thomas Fischer

Sign in / Sign up

Export Citation Format

Share Document