scholarly journals Modification of the Disease Progression in Mice with Experimental Autoimmune Encephalomyelitis Using Anti-Mitotic Compounds

2021 ◽  
Author(s):  
◽  
Kevin Patrick Crume

<p>Multiple sclerosis (MS) is a multi-faceted disease, and is believed to be caused by an autoimmune response to myelin antigens in the central nervous system. Experimental autoimmune encephalomyelitis (EAE), an animal model for MS. manifests itself in various forms that parallel many aspects of MS, including the appearance of symptoms, initiation events, and pathophysiology. The hallmark of any immune response is the antigen-specific proliferation of immune cells, and during the initiation events of EAE, proliferating CD4+ T cells are the primary mediators of disease. This thesis explores if targeting these proliferating cells with the anti-mitotic compounds paclitaxel and peloruside A can delay or prevent the unset of EAE, thus providing a novel therapeutic avenue for MS research. The anti-cancer compound, paclitaxel, is an anti-mitotic drug that prevents microtubule depolymerisation. Although paclitaxel has been used in the clinical setting to treat cancer for over a decade, it has been determined that paclitaxel stimulates murine toll-like receptor 4 (TLR4) complex, which is the major LPS receptor. A novel microtubule-stabilising compound, peloruside, is currently subject to intensive investigations due to its functional similarity to paclitaxel. The results from this project found that peloruside and paclitaxel inhibited the proliferation of mitogen-stimulated splenocytes with IC50 values of 83 nM and 30 nM, respectively, but did not affect the viability of non-proliferating cells In contrast to paclitaxel, peloruside did not cause the TLR4-mediated production of the inflammatory mediators. TNF-epsilon, IL-12, and nitric oxide, when cultured with IFN-epsilon stimulated murine macrophages. Interestingly, when LPS was included with either paclitaxel or peloruside A, both drugs decreased the production of TNF-e and nitric oxide from macrophages, suggesting that microtubule-stabilising compounds may have anti-inflammatory effects. To identify any immunomodifying effects of paclitaxel in vivo, paclitaxel was administered to mice that were immunised with the myelin protein MOG in complete Freund's adjuvant (CFA) to induce EAE. When Taxol was administered to mice for 5 consecutive days immediately following CFA/MOG immunisation, the onset of EAE was delayed by approximately I week. Moreover, the administration of peloruside following the same treatment regime also resulted in a similar delay of disease onset. Taxol treatments, however, lead to significant mortality in immunised, but not unimmunised mice. Interestingly, although Taxol is an anti-mitotic drug, the proliferation of antigen-specific T cells was not inhibited in vivo by the Taxol treatment. The findings revealed in this thesis present an opportunity to pursue a new avenue of research for the therapeutic treatment of MS sufferers, and possibly other inflammatory autoimmune disorders.</p>

2021 ◽  
Author(s):  
◽  
Kevin Patrick Crume

<p>Multiple sclerosis (MS) is a multi-faceted disease, and is believed to be caused by an autoimmune response to myelin antigens in the central nervous system. Experimental autoimmune encephalomyelitis (EAE), an animal model for MS. manifests itself in various forms that parallel many aspects of MS, including the appearance of symptoms, initiation events, and pathophysiology. The hallmark of any immune response is the antigen-specific proliferation of immune cells, and during the initiation events of EAE, proliferating CD4+ T cells are the primary mediators of disease. This thesis explores if targeting these proliferating cells with the anti-mitotic compounds paclitaxel and peloruside A can delay or prevent the unset of EAE, thus providing a novel therapeutic avenue for MS research. The anti-cancer compound, paclitaxel, is an anti-mitotic drug that prevents microtubule depolymerisation. Although paclitaxel has been used in the clinical setting to treat cancer for over a decade, it has been determined that paclitaxel stimulates murine toll-like receptor 4 (TLR4) complex, which is the major LPS receptor. A novel microtubule-stabilising compound, peloruside, is currently subject to intensive investigations due to its functional similarity to paclitaxel. The results from this project found that peloruside and paclitaxel inhibited the proliferation of mitogen-stimulated splenocytes with IC50 values of 83 nM and 30 nM, respectively, but did not affect the viability of non-proliferating cells In contrast to paclitaxel, peloruside did not cause the TLR4-mediated production of the inflammatory mediators. TNF-epsilon, IL-12, and nitric oxide, when cultured with IFN-epsilon stimulated murine macrophages. Interestingly, when LPS was included with either paclitaxel or peloruside A, both drugs decreased the production of TNF-e and nitric oxide from macrophages, suggesting that microtubule-stabilising compounds may have anti-inflammatory effects. To identify any immunomodifying effects of paclitaxel in vivo, paclitaxel was administered to mice that were immunised with the myelin protein MOG in complete Freund's adjuvant (CFA) to induce EAE. When Taxol was administered to mice for 5 consecutive days immediately following CFA/MOG immunisation, the onset of EAE was delayed by approximately I week. Moreover, the administration of peloruside following the same treatment regime also resulted in a similar delay of disease onset. Taxol treatments, however, lead to significant mortality in immunised, but not unimmunised mice. Interestingly, although Taxol is an anti-mitotic drug, the proliferation of antigen-specific T cells was not inhibited in vivo by the Taxol treatment. The findings revealed in this thesis present an opportunity to pursue a new avenue of research for the therapeutic treatment of MS sufferers, and possibly other inflammatory autoimmune disorders.</p>


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2154
Author(s):  
Maud Bagnoud ◽  
Myriam Briner ◽  
Jana Remlinger ◽  
Ivo Meli ◽  
Sara Schuetz ◽  
...  

c-Jun N-terminal kinase (JNK) is upregulated during multiple sclerosis relapses and at the peak of experimental autoimmune encephalomyelitis (EAE). We aim to investigate the effects of pharmacological pan-JNK inhibition on the course of myelin oligodendrocyte glycoprotein (MOG35-55) EAE disease using in vivo and in vitro experimental models. EAE was induced in female C57BL/6JRj wild type mice using MOG35-55. SP600125 (SP), a reversible adenosine triphosphate competitive pan-JNK inhibitor, was then given orally after disease onset. Positive correlation between SP plasma and brain concentration was observed. Nine, but not three, consecutive days of SP treatment led to a significant dose-dependent decrease of mean cumulative MOG35-55 EAE severity that was associated with increased mRNA expression of interferon gamma (INF-γ) and tumor necrosis factor alpha (TNF-α) in the spinal cord. On a histological level, reduced spinal cord immune cell-infiltration predominantly of CD3+ T cells as well as increased activity of Iba1+ cells were observed in treated animals. In addition, in vitro incubation of murine and human CD3+ T cells with SP resulted in reduced T cell apoptosis and proliferation. In conclusion, our study demonstrates that pharmacological pan-JNK inhibition might be a treatment strategy for autoimmune central nervous system demyelination.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1755-1761 ◽  
Author(s):  
Emanuela Zappia ◽  
Simona Casazza ◽  
Enrico Pedemonte ◽  
Federica Benvenuto ◽  
Ivan Bonanni ◽  
...  

Abstract We studied the immunoregulatory features of murine mesenchymal stem cells (MSCs) in vitro and in vivo. MSCs inhibited T-cell receptor (TCR)-dependent and -independent proliferation but did not induce apoptosis on T cells. Such inhibition was paired with a decreased interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha production and was partially reversed by interleukin-2 (IL-2). Thus, we used MSCs to treat myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. We injected intravenously 1 × 106 MSCs before disease onset (preventive protocol) and at different time points after disease occurrence (therapeutic protocol). MSC administration before disease onset strikingly ameliorated EAE. The therapeutic scheme was effective when MSCs were administered at disease onset and at the peak of disease but not after disease stabilization. Central nervous system (CNS) pathology showed decreased inflammatory infiltrates and demyelination in mice that received transplants of MSCs. T-cell response to MOG and mitogens from MSC-treated mice was inhibited and restored by IL-2 administration. Upon MSC transfection with the enhanced green fluorescent protein (eGFP), eGFP+ cells were detected in the lymphoid organs of treated mice. These data suggest that the immunoregulatory properties of MSCs effectively interfere with the autoimmune attack in the course of EAE inducing an in vivo state of T-cell unresponsiveness occurring within secondary lymphoid organs. (Blood. 2005; 106:1755-1761)


1996 ◽  
Vol 184 (6) ◽  
pp. 2271-2278 ◽  
Author(s):  
Susan D. Wolf ◽  
Bonnie N. Dittel ◽  
Fridrika Hardardottir ◽  
Charles A. Janeway

Experimental autoimmune encephalomyelitis (EAE) is an animal model for autoimmune central nervous system disease mediated by CD4 T cells. To examine the role of B cells in the induction of EAE, we used B10.PL (I-Au) mice rendered deficient in B cells by deletion of their μ chain transmembrane region (B10.PLμMT). By immunizing B10.PL and B10.PLμMT mice with the NH-terminal myelin basic protein encephalitogenic peptide Ac1-11, we observed no difference in the onset or severity of disease in the absence of mature B cells. There was, however, a greater variation in disease onset, severity, and especially of recovery in the B cell–deficient mice compared to controls. B10.PLμMT mice rarely returned to normal in the absence of B cells. Taken together, our data suggest that B cells do not play a role in the activation of encephalitogenic T cells, but may contribute to the immune modulation of acute EAE. The mechanisms to explain these effects are discussed.


2005 ◽  
Vol 202 (3) ◽  
pp. 445-455 ◽  
Author(s):  
Niklas Beyersdorf ◽  
Stefanie Gaupp ◽  
Karen Balbach ◽  
Jens Schmidt ◽  
Klaus V. Toyka ◽  
...  

CD4+CD25+ regulatory T cells (T reg cells) play a key role in controlling autoimmunity and inflammation. Therefore, therapeutic agents that are capable of elevating numbers or increasing effector functions of this T cell subset are highly desirable. In a previous report we showed that a superagonistic monoclonal antibody specific for rat CD28 (JJ316) expands and activates T reg cells in vivo and upon short-term in vitro culture. Here we demonstrate that application of very low dosages of the CD28 superagonist into normal Lewis rats is sufficient to induce T reg cell expansion in vivo without the generalized lymphocytosis observed with high dosages of JJ316. Single i.v. administration of a low dose of the CD28 superagonist into Dark Agouti (DA) rats or Lewis rats that suffered from experimental autoimmune encephalomyelitis (EAE) proved to be highly and equally efficacious as high-dose treatment. Finally, we show that T reg cells that were isolated from CD28-treated animals displayed enhanced suppressive activity toward myelin basic protein–specific T cells in vitro, and, upon adoptive transfer, protected recipients from EAE. Our data indicate that this class of CD28-specific monoclonal antibodies targets CD4+CD25+ T reg cells and provides a novel means for the effective treatment of multiple sclerosis and other autoimmune diseases.


Brain ◽  
2021 ◽  
Author(s):  
Nail Benallegue ◽  
Hania Kebir ◽  
Richa Kapoor ◽  
Alexis Crockett ◽  
Cen Li ◽  
...  

Abstract The concerted actions of the CNS and the immune system are essential to coordinate the outcome of neuroinflammatory responses. Yet, the precise mechanisms involved in this crosstalk and their contribution to the pathophysiology of neuroinflammatory diseases largely elude us. Here, we show that the CNS-endogenous hedgehog pathway, a signal triggered as part of the host response during the inflammatory phase of multiple sclerosis and experimental autoimmune encephalomyelitis, attenuates the pathogenicity of human and mouse effector CD4 T cells by regulating their production of inflammatory cytokines. Using a murine genetic model in which the hedgehog signaling is compromised in CD4 T cells, we show that the hedgehog pathway acts on CD4 T cells to suppress pathogenic hallmarks of autoimmune neuroinflammation, including demyelination and axonal damage, and thus mitigates the development of experimental autoimmune encephalomyelitis. Impairment of hedgehog signaling in CD4 T cells exacerbates brain-brainstem-cerebellum inflammation and leads to the development of atypical disease. Moreover, we present evidence that hedgehog signaling regulates the pathogenic profile of CD4 T cells by limiting their production of inflammatory cytokines GM-CSF and IFN-γ and by antagonizing their inflammatory program at the transcriptome level. Likewise, hedgehog signaling attenuates the inflammatory phenotype of human CD4 memory T cells. From a therapeutic point of view, our study underlines the potential of harnessing the hedgehog pathway to counteract ongoing excessive CNS inflammation as systemic administration of a hedgehog agonist after disease onset effectively halts disease progression and significantly reduces neuroinflammation and the underlying neuropathology. We thus unveil a previously unrecognized role for the hedgehog pathway in regulating pathogenic inflammation within the CNS, but also propose to exploit its ability to modulate this neuroimmune network as a strategy to limit the progression of ongoing neuroinflammation.


2010 ◽  
Vol 16 (12) ◽  
pp. 1458-1473 ◽  
Author(s):  
CL Galligan ◽  
LM Pennell ◽  
TT Murooka ◽  
E Baig ◽  
B Majchrzak-Kita ◽  
...  

Background: Interferon (IFN)-β is an effective therapy for relapsing-remitting multiple sclerosis, yet its mechanism of action remains ill-defined. Objectives: Our objective was to characterize the role of IFN-β in immune regulation in experimental autoimmune encephalomyelitis (EAE). Methods: IFN-β +/+ and IFN-β—/— mice were immunized with myelin oligodendrocyte glycoprotein peptide in the presence or absence of IFN-β, to induce EAE. Disease pathogenesis was monitored in the context of incidence, time of onset, clinical score, and immune cell activation in the brains, spleens and lymph nodes of affected mice. Results: Compared with IFN-β+/+ mice, IFN-β—/ — mice exhibited an earlier onset and a more rapid progression of EAE, increased numbers of CD11b+ leukocytes infiltrating affected brains and an increased percentage of Th17 cells in the central nervous system and draining lymph nodes. IFN-β treatment delayed disease onset and reduced disease severity. Ex vivo experiments revealed that the lack of IFN-β results in enhanced generation of autoreactive T cells, a likely consequence of the absence of IFN-β-regulated events in both the CD4+ T cells and antigen-presenting dendritic cells. Gene expression analysis of IFN-β-treated bone marrow macrophages (CD11b +) identified modulation of genes affecting T cell proliferation and Th17 differentiation. Conclusions: We conclude that IFN-β acts to suppress the generation of autoimmune-inducing Th17 cells during the development of disease as well as modulating pro-inflammatory mediators.


2020 ◽  
Author(s):  
Ke An ◽  
Mengjiao Xue ◽  
Jiaying Zhong ◽  
Shengnan Yu ◽  
Zhongquan Qi ◽  
...  

Abstract Background: Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by severe demyelination of white matter. There is no definite cure for MS owing to its complex pathogenesis. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine used for its therapeutic properties for several autoimmune diseases. It is also used to inhibit acute immune rejection due to its anti-inflammatory and immunosuppressive properties. However, it is unclear whether ATO has a therapeutic effect on EAE, and the underlying mechanisms have not been clearly elucidated. In this study, we attempted to explore the possibility of using ATO to ameliorate EAE in mice.Methods: ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and proportion of CD4+ T cells. In vitro, for mechanistic studies, CD4+ T cells were sorted from the spleen of naïve C57BL/6 mice and treated with ATO and then used for apoptosis assay, JC-1 staining, transmission electron microscope, and western blotting.Results: ATO delayed the onset of EAE and alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation and decreased the expression of IL-2, IFN-γ, IL-1β, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4+ T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4+ T cells apoptosis through the mitochondrial pathway both in vitro and in vivo. Additionally, the administration of ATO had no adverse effect on the heart, liver, and kidney function and did not induce apoptosis in the spinal cord.Conclusions: Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.


Sign in / Sign up

Export Citation Format

Share Document