scholarly journals Water in Pinus Radiata Wood Secondary Cell Walls: An Investigation Using Nuclear Magnetic Resonance and Synchrotron X-Ray Diffraction

2021 ◽  
Author(s):  
◽  
Stefan James Hill

<p>The mechanical properties of wood allow it to be used for numerous purposes. For most purposes, drying of the wood material from the green state, sawn from the log, is first required. This drying step significantly improves the strength properties of wood. It is therefore clear that moisture in wood plays an important role in determining the bulk mechanical properties. Over the last century, many studies have been carried out to investigate the way in which the water content wood affects the bulk mechanical properties. More recent studies have focused to the individual chemical components that make up wood to understand the observed changes in bulk mechanical properties. Models of the nanostructure of wood contained; cellulose, hemicellulose, and lignin, and the arrangement and location of these components in terms of their mechanical properties was interpreted through what was described as the 'slip-stick' mechanism, by which wood, in its green state, maintained its molecular and mechanical properties under external stresses. This model, while insightful, failed to account for the presence and the role of water in the nanostructure of wood. In this work, synchrotron based X-ray diffraction and NMR studies, have been used to develop a new model, in which water plays a vital role in the determination of the mechanical properties of wood in its green, part-dried, and rewet states. X-ray diffraction showed that changes occur to the molecular packing of cellulose crystallites with change in moisture content, and that these changes begin to occur under mild drying conditions, i.e. drying in air at ambient temperatures. These changes depend on the severity of drying, whether ambient or forced oven drying, and are to some extent reversible. A spin-diffusion model was constructed using dimensions obtained from Xray diffraction, comparisons between predictions and experimental data from an NMR study showed that the location of water was dependent on the moisture history of wood. In the green state, at least some of the water in the wood cell wall forms a layer, between the cellulose crystals and the hemicellulose and lignin matrix. If dried and then rewet, this water associated with the cellulose crystals was not present to the same degree as in the green state, allowing a closer association of the hemicellulose with the cellulose. The effect of this change in water distribution in the wood cell wall on the bulk mechanical wood properties was shown in mechanical testing. The nanostructure of the wood cell wall therefore should be considered to contain cellulose, hemicellulose, lignin and water, where each component contributes, according to its molecular properties, dynamic mechanical properties which are reflected in the bulk material properties.</p>

2021 ◽  
Author(s):  
◽  
Stefan James Hill

<p>The mechanical properties of wood allow it to be used for numerous purposes. For most purposes, drying of the wood material from the green state, sawn from the log, is first required. This drying step significantly improves the strength properties of wood. It is therefore clear that moisture in wood plays an important role in determining the bulk mechanical properties. Over the last century, many studies have been carried out to investigate the way in which the water content wood affects the bulk mechanical properties. More recent studies have focused to the individual chemical components that make up wood to understand the observed changes in bulk mechanical properties. Models of the nanostructure of wood contained; cellulose, hemicellulose, and lignin, and the arrangement and location of these components in terms of their mechanical properties was interpreted through what was described as the 'slip-stick' mechanism, by which wood, in its green state, maintained its molecular and mechanical properties under external stresses. This model, while insightful, failed to account for the presence and the role of water in the nanostructure of wood. In this work, synchrotron based X-ray diffraction and NMR studies, have been used to develop a new model, in which water plays a vital role in the determination of the mechanical properties of wood in its green, part-dried, and rewet states. X-ray diffraction showed that changes occur to the molecular packing of cellulose crystallites with change in moisture content, and that these changes begin to occur under mild drying conditions, i.e. drying in air at ambient temperatures. These changes depend on the severity of drying, whether ambient or forced oven drying, and are to some extent reversible. A spin-diffusion model was constructed using dimensions obtained from Xray diffraction, comparisons between predictions and experimental data from an NMR study showed that the location of water was dependent on the moisture history of wood. In the green state, at least some of the water in the wood cell wall forms a layer, between the cellulose crystals and the hemicellulose and lignin matrix. If dried and then rewet, this water associated with the cellulose crystals was not present to the same degree as in the green state, allowing a closer association of the hemicellulose with the cellulose. The effect of this change in water distribution in the wood cell wall on the bulk mechanical wood properties was shown in mechanical testing. The nanostructure of the wood cell wall therefore should be considered to contain cellulose, hemicellulose, lignin and water, where each component contributes, according to its molecular properties, dynamic mechanical properties which are reflected in the bulk material properties.</p>


IAWA Journal ◽  
2021 ◽  
pp. 1-10
Author(s):  
Yurong Wang ◽  
Ru Jia ◽  
Haiyan Sun ◽  
Yamei Liu ◽  
Jianxiong Lyu ◽  
...  

Abstract Mechanical testing, microscopic image analysis, and X-ray diffraction were used to study the mechanical properties and their correlation with microstructure in three 20-year-old Chinese fir clones (Kailin 24, Kaihua 13, and Kaihua 3). The Chinese fir clones featured a modulus of rupture (MOR) of 52–59 MPa, a modulus of elasticity (MOE) of 10–11 GPa, and a compressive strength parallel to the grain of 31–34 MPa. Kaihua 13 and Kailin 24 had similar mechanical properties and were superior to Kaihua 3 among the tree clones. Radial variation indicated that their outerwood (rings 9–18) had better mechanical properties than their corewood (rings 3–7). Kaihua 13 with better mechanical properties had a larger ratio of cell wall to lumen than Kaihua 3 and Kailin 24. Outerwood with better mechanical properties also had a larger ratio of cell wall to lumen and a smaller microfibril angle compared to corewood with poor mechanical properties. Linear regression analysis also shows that for various clones and different radial positions in the same clone, anatomical structure parameters such as average cell wall thickness and the ratio of cell wall to lumen were positively correlated to their mechanical properties, while the microfibril angle was negatively correlated to mechanical properties. The two factors synergistically influence the mechanical properties of wood.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2019 ◽  
Vol 15 (8) ◽  
pp. 850-862
Author(s):  
Mirthala Flores-García ◽  
Juan Manuel Fernández-G. ◽  
Cristina Busqueta-Griera ◽  
Elizabeth Gómez ◽  
Simón Hernández-Ortega ◽  
...  

Background: Ischemic heart disease, cerebrovascular accident, and venous thromboembolism have the presence of a thrombotic event in common and represent the most common causes of death within the population. Objective: Since Schiff base copper(II) complexes are able to interact with polyphosphates (PolyP), a procoagulant and potentially prothrombotic platelet agent, we investigated the antiplatelet aggregating properties of two novel tridentate Schiff base ligands and their corresponding copper( II) complexes. Methods: The Schiff base ligands (L1) and (L2), as well as their corresponding copper(II) complexes (C1) and (C2), were synthesized and characterized by chemical analysis, X-ray diffraction, mass spectrometry, and UV-Visible, IR and far IR spectroscopy. In addition, EPR studies were carried out for (C1) and (C2), while (L1) and (L2) were further analyzed by 1H and 13C NMR. Tests for antiplatelet aggregation activities of all of the four compounds were conducted. Results: X-ray diffraction studies show that (L1) and (L2) exist in the enol-imine tautomeric form with a strong intramolecular hydrogen bond. NMR studies show that both ligands are found as enol-imine tautomers in CDCl3 solution. In the solid state, the geometry around the copper(II) ion in both (C1) and (C2) is square planar. EPR spectra suggest that the geometry of the complexes is similar to that observed in the solid state by X-ray crystallography. Compound (C2) exhibited the strongest antiplatelet aggregation activity. Conclusion: Schiff base copper(II) complexes, which are attracting increasing interest, could represent a new approach to treat thrombosis by blocking the activity of PolyP with a potential anticoagulant activity and, most importantly, demonstrating no adverse bleeding events.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


1999 ◽  
Vol 23 (3) ◽  
pp. 178-179
Author(s):  
Wendy I. Cross ◽  
Kevin R. Flower ◽  
Robin G. Pritchard

The acetic acid esters of 1-(4-methylphenylazo)naphthalen-2-ol 1 and 2-(4-methylphenylazo)-4-methylphenol 3 are prepared and characterised by single crystal X-ray diffraction studies and 13C{1H}NMR spectroscopy; the position of the C(2)13C resonance for the ester is used to predict the position of resonant frequency of the equivalent carbon in the parent alcohols and hence, calculate the position of the azo-hydrazone equilibrium in these compounds.


Sign in / Sign up

Export Citation Format

Share Document