scholarly journals Global Sustainability and the New Zealand House

2021 ◽  
Author(s):  
◽  
J. Andrew Alcorn

<p>"How do you build a sustainable house in New Zealand? - is it even possible?" This thesis is structured in three parts to answer this question. The first part asks, then answers, "What is sustainability?", "How do you measure sustainability?" and "How do you know when you have reached sustainability - what is its limit?" The second part describes the methodologies for conducting embodied energy and CO2 analysis. The third part applies the results of the sustainability definition, and the energy and CO2 methodologies to a series of house designs. Part 1 defines, measures, and establishes a limit for sustainability. It reviews the history of sustainability and sustainable development. A distillation of what is being sought by the various parties to the sustainability debate then contributes to a checklist of essential requirements for a functional definition of sustainability. Addressing climate change is shown to be the major requirement. The checklist enables answers to the questions about measuring sustainability, and knowing when its limit has been reached, and leads to a functional definition: Sustainability meets the needs of the present without annual CO2 emissions exceeding what the planet can absorb. The requirements for sustainability indicator methods are examined. A robust way of comparing environment impacts is introduced. Several common sustainability indicators are examined against the requirements, but are found wanting, while two are found to be effective: energy and CO2 analysis. Human population and annual global carbon absorption are used to identify global and per-capita sustainability limits, which can be applied at many scales to many activities. They are applied to New Zealand's housing sector to identify a sustainable annual per-house emissions target, including construction, maintenance, and operation. Part 2 reviews the methodologies to measure and delimit sustainability using embodied energy and embodied CO2 analysis. A new, fast, accurate, and reliable process-based hybrid analysis method developed for this research is used to derive embodied energy and CO2 coefficients for building materials. Part 3 applies the results of the sustainability definition and limit, and the energy and CO2 methodologies and coefficients from analysing building materials, to a series of house designs within New Zealand and global contexts. A spreadsheet-based calculator developed for this analysis that has potential beyond this thesis is described. A method is presented for annualising emissions to fairly account for differing building components' lifetimes. Finally, a sustainable house is shown to be possible by combining several strategies to meet the challenging sustainable emissions target. Technologies that reduce grid electricity use - solar hot water, PV, and wind-generators - are crucial, cutting emissions the most. Bio-based materials sequestering carbon are the second most important strategy: strawbale insulation to ~R10, and timber for framing, cladding, windows, linings, and roofing. Efficient appliances, lighting, and other low-emission materials were also helpful. Other key outcomes were: hot water heating emits the most CO2, double any other category; heating energy emissions are smaller than any other category; CO2-optimal conventional insulation levels are ~R5; CO2 flux of materials is double operating energy CO2 for sustainable houses.</p>

2021 ◽  
Author(s):  
◽  
J. Andrew Alcorn

<p>"How do you build a sustainable house in New Zealand? - is it even possible?" This thesis is structured in three parts to answer this question. The first part asks, then answers, "What is sustainability?", "How do you measure sustainability?" and "How do you know when you have reached sustainability - what is its limit?" The second part describes the methodologies for conducting embodied energy and CO2 analysis. The third part applies the results of the sustainability definition, and the energy and CO2 methodologies to a series of house designs. Part 1 defines, measures, and establishes a limit for sustainability. It reviews the history of sustainability and sustainable development. A distillation of what is being sought by the various parties to the sustainability debate then contributes to a checklist of essential requirements for a functional definition of sustainability. Addressing climate change is shown to be the major requirement. The checklist enables answers to the questions about measuring sustainability, and knowing when its limit has been reached, and leads to a functional definition: Sustainability meets the needs of the present without annual CO2 emissions exceeding what the planet can absorb. The requirements for sustainability indicator methods are examined. A robust way of comparing environment impacts is introduced. Several common sustainability indicators are examined against the requirements, but are found wanting, while two are found to be effective: energy and CO2 analysis. Human population and annual global carbon absorption are used to identify global and per-capita sustainability limits, which can be applied at many scales to many activities. They are applied to New Zealand's housing sector to identify a sustainable annual per-house emissions target, including construction, maintenance, and operation. Part 2 reviews the methodologies to measure and delimit sustainability using embodied energy and embodied CO2 analysis. A new, fast, accurate, and reliable process-based hybrid analysis method developed for this research is used to derive embodied energy and CO2 coefficients for building materials. Part 3 applies the results of the sustainability definition and limit, and the energy and CO2 methodologies and coefficients from analysing building materials, to a series of house designs within New Zealand and global contexts. A spreadsheet-based calculator developed for this analysis that has potential beyond this thesis is described. A method is presented for annualising emissions to fairly account for differing building components' lifetimes. Finally, a sustainable house is shown to be possible by combining several strategies to meet the challenging sustainable emissions target. Technologies that reduce grid electricity use - solar hot water, PV, and wind-generators - are crucial, cutting emissions the most. Bio-based materials sequestering carbon are the second most important strategy: strawbale insulation to ~R10, and timber for framing, cladding, windows, linings, and roofing. Efficient appliances, lighting, and other low-emission materials were also helpful. Other key outcomes were: hot water heating emits the most CO2, double any other category; heating energy emissions are smaller than any other category; CO2-optimal conventional insulation levels are ~R5; CO2 flux of materials is double operating energy CO2 for sustainable houses.</p>


2012 ◽  
Vol 730-732 ◽  
pp. 587-591 ◽  
Author(s):  
F. Pacheco-Torgal ◽  
Joana Faria ◽  
Saíd Jalali

Energy is a key issue for Portugal, it is responsible for the higher part of its imports and since almost 30% of Portuguese energy is generated in power stations it is also responsible for high CO2 emissions. Between 1995 and 2005 Portuguese GNP rise 28%, however the imported energy in the same period increased 400%, from 1500 million to 5500 million dollars. As to the period between 2005 and 2007 the energy imports reach about 10,000 million dollars. Although recent and strong investments in renewable energy, Portugal continue to import energy and fossil fuels. This question is very relevant since a major part of the energy produced in Portugal is generated in power plants thus emitting greenhouse gases (GHGs). Therefore, investigations that could minimize energy use are needed. This paper presents a case study of a 97 apartment-type building (27.647 m2) located in Portugal, concerning both embodied energy as well as operational energy (heating, hot water, electricity). The operational energy was an average of 187,2 MJ/m2/yr and the embodied energy accounts for aprox. 2372 MJ/m2, representing just 25,3% of the former for a service life of 50 years. Since Portuguese energy efficiency building regulation made under the Energy Performance Building Directive (2002/91/EC-EPBD) will lead to a major decrease of operational energy this means that the energy required for the manufacturing of building materials could represent in a near future almost 400% of operational energy. Replacement up to 75% of Portland cement with mineral admixtures could allow energy savings needed to operate a very high efficient 97 apartment-type building during 50 years.


2021 ◽  
Author(s):  
Jacob Coleman

<p><b>New Zealand has a serious construction and demolition(C&D) waste issue. A Ministry for the Environment studyfrom 2019 found that 2.9 million tonnes of C&D waste aredisposed of at C&D fills nationwide every year (Ministry forthe Environment, 2019). Averaged across the populationthis equates to nearly 600 kg per person. AucklandCouncil’s ‘Low Carbon Auckland’ plan presents totallandfill waste reduction targets of 30% by 2020, 60% by2030, and ‘zero waste’ by 2040 (Auckland Council, 2014).</b></p> <p>To achieve this goal of zero waste, building materialsmust operate within a closed loop (Baker-Brown, 2017;McDonough & Braungart, 2002). Materials can either bea part of a closed organic loop (natural biodegradablematerials) or a closed technical loop (man-made cycleof reuse) (Baker-Brown, 2017; McDonough & Braungart,2002).</p> <p>This thesis aims to achieve a zero-waste mediumdensity housing design for New Zealand that maximisesthe use of biodegradable building materials. However,it is hypothesised along with Sassi (2006) that bothbiodegradable and reusable components will be requiredto achieve zero waste. This thesis also seeks the mostsuitable biodegradable materials for New Zealand’sclimate and the optimum construction approach tosupport these materials. This research also contributestowards reducing the embodied energy and greenhousegas emissions of the New Zealand building industry.</p> <p>The most suitable biodegradable materials for New Zealandwere selected based on availability and performance foundto be untreated timber, clay plaster and, straw and woolinsulation. In-situ construction, prefabricated wall panelsand, standardised block modules were then compared tofind the most suitable construction approach to supportthese materials and was found to be prefabricated wallpanels. A building design was then pursued driven by theneed to protect the biodegradable insulation materialsfrom moisture infiltration. The design is then integratedwithin a site in Upper Hutt to address the demand forhousing densification and demonstrate the potential forapplication of biodegradable materials to an urban settingat the scale of a medium density housing development.</p> <p>A detailed BIM model of the building design was producedfrom which volumes of individual components wereextracted and categorised regarding their biodegradabilityor reusability or lack thereof. This was done to determinethe proportion and quantity of biodegradable materials andwaste generated by the design. An identical design usingconventional New Zealand materials and constructiontechniques was also produced for comparison.</p> <p>Biodegradable materials made up 82% of the final designconstruction by volume and 91% of the construction byvolume was diverted from landfill (reusable componentsmade up 9% of the construction). This suggests thatAuckland Council’s goal of 60% waste reduction by 2030 istheoretically possible for developments of a similar scaleto the final design. However, the goal of ‘zero waste’ by2040 seems unobtainable even if significant improvementsare made.</p>


2021 ◽  
Author(s):  
Jacob Coleman

<p><b>New Zealand has a serious construction and demolition(C&D) waste issue. A Ministry for the Environment studyfrom 2019 found that 2.9 million tonnes of C&D waste aredisposed of at C&D fills nationwide every year (Ministry forthe Environment, 2019). Averaged across the populationthis equates to nearly 600 kg per person. AucklandCouncil’s ‘Low Carbon Auckland’ plan presents totallandfill waste reduction targets of 30% by 2020, 60% by2030, and ‘zero waste’ by 2040 (Auckland Council, 2014).</b></p> <p>To achieve this goal of zero waste, building materialsmust operate within a closed loop (Baker-Brown, 2017;McDonough & Braungart, 2002). Materials can either bea part of a closed organic loop (natural biodegradablematerials) or a closed technical loop (man-made cycleof reuse) (Baker-Brown, 2017; McDonough & Braungart,2002).</p> <p>This thesis aims to achieve a zero-waste mediumdensity housing design for New Zealand that maximisesthe use of biodegradable building materials. However,it is hypothesised along with Sassi (2006) that bothbiodegradable and reusable components will be requiredto achieve zero waste. This thesis also seeks the mostsuitable biodegradable materials for New Zealand’sclimate and the optimum construction approach tosupport these materials. This research also contributestowards reducing the embodied energy and greenhousegas emissions of the New Zealand building industry.</p> <p>The most suitable biodegradable materials for New Zealandwere selected based on availability and performance foundto be untreated timber, clay plaster and, straw and woolinsulation. In-situ construction, prefabricated wall panelsand, standardised block modules were then compared tofind the most suitable construction approach to supportthese materials and was found to be prefabricated wallpanels. A building design was then pursued driven by theneed to protect the biodegradable insulation materialsfrom moisture infiltration. The design is then integratedwithin a site in Upper Hutt to address the demand forhousing densification and demonstrate the potential forapplication of biodegradable materials to an urban settingat the scale of a medium density housing development.</p> <p>A detailed BIM model of the building design was producedfrom which volumes of individual components wereextracted and categorised regarding their biodegradabilityor reusability or lack thereof. This was done to determinethe proportion and quantity of biodegradable materials andwaste generated by the design. An identical design usingconventional New Zealand materials and constructiontechniques was also produced for comparison.</p> <p>Biodegradable materials made up 82% of the final designconstruction by volume and 91% of the construction byvolume was diverted from landfill (reusable componentsmade up 9% of the construction). This suggests thatAuckland Council’s goal of 60% waste reduction by 2030 istheoretically possible for developments of a similar scaleto the final design. However, the goal of ‘zero waste’ by2040 seems unobtainable even if significant improvementsare made.</p>


2021 ◽  
Vol 52 (2) ◽  
Author(s):  
Monica Parlato ◽  
Simona M.C. Porto ◽  
Giovanni Cascone

Raw earth, like wood and stone, is one of the oldest building materials used across the world. Nowadays, given the growing role of circular economy, researchers are ever more interested in raw earth-based building materials, because they are widely available and environmentally friendly. The use of this traditional material has positive environmental consequences, especially in traditional rural building reuse and in rural landscape preservation. In fact, raw earth is locally available and totally recyclable and, thanks to its perfect integration into the landscape, it improves site visual perception. Additives and/or chemical stabilizer agents (i.e., Portland cement) are often used in the production of raw earthbased building components in order to increase their mechanical performance and durability. This production process reduces the environmental sustainability of the base material and causes a relevant increase on the embodied energy (i.e., the total energy required for the extraction, processing, manufacturing, and delivery of building components). This research work aimed at investigating how to improve the mix-design of earth-based building materials in order to increase their mechanical properties without any addition of chemical agents. A physical stabilization was performed on an original texture soil by adding various particle sizes. Mechanical tests were carried out on five different soil mixes by changing soil composition, aggregates, and water. Specimens made with mix-design 5 offered the best results in terms of flexural and compressive strength values which were 1.65 MPa and 6.74 MPa, respectively. Mix 3 obtained the lowest linear shrinkage rate (6.04%). Since raw earth-based materials are highly sensitive to soil composition and aggregates, this study attempted to obtain a repeatable process to produce semi-industrial adobes by optimizing and controlling various natural materials (i.e., soils, aggregates, and water).


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


Author(s):  
S. I. Nefedkin ◽  
A. O. Barsukov ◽  
M. I. Mozgova ◽  
M. S. Shichkov ◽  
M. A. Klimova

The paper proposes an alternative scheme of guaranteed electricity and heat supply of an energy-insulated facility with a high potential of wind energy without the use of imported or local fuel. The scheme represents a wind power complex containing the park of wind generators located at the points with high wind potential. The wind generators provide guaranteed power supply even in periods of weak wind. For heat supply of the consumer, all surplus of the electric power goes on thermoelectric heating of water in tanks of accumulators, and also on receiving hydrogen by a method of electrolysis of water. The current heat supply is carried out with the use of hot water storage tanks, and the heat supply during the heat shortage is carried out by burning the stored hydrogen in condensing hydrogen boilers. We have developed the algorithm of calculation and the program "Wind in energy" which allows calculating annual balance of energy and picking up necessary quantity of the equipment for implementation of the scheme proceeding from the annual schedule of thermal and electric loading, and also potential of wind energy in the chosen region. The calculation-substantiation of the scheme proposed in relation to the real energy-insulated object Ust-Kamchatsk (Kamchatka) is carried out. The equipment for the implementation of an alternative energy supply scheme without the use of imported fuel is selected and compared with the traditional energy supply scheme based on a diesel power plant and a boiler house operating on imported fuel. With the introduction of an alternative power supply scheme, the equipment of the traditional scheme that has exhausted its resource can be used for backup power supply. Using climate databases, a number of energy-insulated facilities in the North and East of Russia with high wind energy potential are considered and the conditions for the successful implementation of the energy supply scheme are analyzed. This requires not only a high average annual wind speed, but also a minimum number of days of weak wind. In addition, it is necessary that the profile of the wind speed distribution in the annual section coincides with the profile of the heat load consumption.


2021 ◽  
Author(s):  
Andreas Grafe ◽  
Thomas Kempka ◽  
Michael Schneider ◽  
Michael Kühn

&lt;p&gt;The geothermal hot water reservoir underlying the coastal township of Waiwera, northern Auckland Region, New Zealand, has been commercially utilized since 1863. The reservoir is complex in nature, as it is controlled by several coupled processes, namely flow, heat transfer and species transport. At the base of the aquifer, geothermal water of around 50&amp;#176;C enters. Meanwhile, freshwater percolates from the west and saltwater penetrates from the sea in the east. Understanding of the system&amp;#8217;s dynamics is vital, as decades of unregulated, excessive abstraction resulted in the loss of previously artesian conditions. To protect the reservoir and secure the livelihoods of businesses, a Water Management Plan by The Auckland Regional Council was declared in the 1980s [1]. In attempts to describe the complex dynamics of the reservoir system with the goal of supplementing sustainable decision-making, studies in the past decades have brought forth several predictive models [2]. These models ranged from being purely data driven statistical [3] to fully coupled process simulations [1].&lt;br&gt;&lt;br&gt;Our objective was to improve upon previous numerical models by introducing an updated geological model, in which the findings of a recently undertaken field campaign were integrated [4]. A static 2D Model was firstly reconstructed and verified to earlier multivariate regression model results. Furthermore, the model was expanded spatially into the third dimension. In difference to previous models, the influence of basic geologic structures and the sea water level onto the geothermal system are accounted for. Notably, the orientation of dipped horizontal layers as well as major regional faults are implemented from updated field data [4]. Additionally, the model now includes the regional topography extracted from a digital elevation model and further combined with the coastal bathymetry. Parameters relating to the hydrogeological properties of the strata along with the thermophysical properties of water with respect to depth were applied. Lastly, the catchment area and water balance of the study region are considered.&lt;br&gt;&lt;br&gt;The simulation results provide new insights on the geothermal reservoir&amp;#8217;s natural state. Numerical simulations considering coupled fluid flow as well as heat and species transport have been carried out using the in-house TRANSport Simulation Environment [5], which has been previously verified against different density-driven flow benchmarks [1]. The revised geological model improves the agreement between observations and simulations in view of the timely and spatial development of water level, temperature and species concentrations, and thus enables more reliable predictions required for water management planning.&lt;br&gt;&lt;br&gt;[1] K&amp;#252;hn M., St&amp;#246;fen H. (2005):&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; Hydrogeology Journal, 13, 606&amp;#8211;626,&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; https://doi.org/10.1007/s10040-004-0377-6&lt;br&gt;&lt;br&gt;[2] K&amp;#252;hn M., Altmannsberger C. (2016):&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; Energy Procedia, 97, 403-410,&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; https://doi.org/10.1016/j.egypro.2016.10.034&lt;br&gt;&lt;br&gt;[3] K&amp;#252;hn M., Sch&amp;#246;ne T. (2017):&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; Energy Procedia, 125, 571-579,&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; https://doi.org/10.1016/j.egypro.2017.08.196&lt;br&gt;&lt;br&gt;[4] Pr&amp;#228;g M., Becker I., Hilgers C., Walter T.R., K&amp;#252;hn M. (2020):&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; Advances in Geosciences, 54, 165-171,&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; https://doi.org/10.5194/adgeo-54-165-2020&lt;br&gt;&lt;br&gt;[5] Kempka T. (2020):&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; Adv. Geosci., 54, 67&amp;#8211;77,&lt;br&gt;&amp;#160; &amp;#160; &amp;#160; https://doi.org/10.5194/adgeo-54-67-2020&lt;/p&gt;


2017 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Olufemi Muibi Omisakin

Entrepreneurship is an important concept in both developing and developed societies today. Although there is no consensus on the definition of entrepreneurship, it is believed to be a process of creating value by bringing together a unique package of resources to exploit entrepreneurship opportunities (Morris, 2002). This study aims to discover the economic contributions and challenges of immigrant entrepreneurs to their host country, and focuses on African small business owners in Auckland, New Zealand. Literature on immigrant entrepreneurship was reviewed, resulting in a discussion of the economic contributions of immigrant entrepreneurship as well as its challenges. Data was collected using face-to-face, semi-structured interviews, observation and field notes as the sources of inquiry. A purposive sampling technique was used to select 17 participants. All participants were African immigrant small business owners running businesses in Auckland. Thematic analysis was used to analyse the data collected (Braun & Clarke, 2006). 


Sign in / Sign up

Export Citation Format

Share Document