scholarly journals Biodegradable Building: A Zero-Waste Medium Density Housing Design For New Zealand

2021 ◽  
Author(s):  
Jacob Coleman

<p><b>New Zealand has a serious construction and demolition(C&D) waste issue. A Ministry for the Environment studyfrom 2019 found that 2.9 million tonnes of C&D waste aredisposed of at C&D fills nationwide every year (Ministry forthe Environment, 2019). Averaged across the populationthis equates to nearly 600 kg per person. AucklandCouncil’s ‘Low Carbon Auckland’ plan presents totallandfill waste reduction targets of 30% by 2020, 60% by2030, and ‘zero waste’ by 2040 (Auckland Council, 2014).</b></p> <p>To achieve this goal of zero waste, building materialsmust operate within a closed loop (Baker-Brown, 2017;McDonough & Braungart, 2002). Materials can either bea part of a closed organic loop (natural biodegradablematerials) or a closed technical loop (man-made cycleof reuse) (Baker-Brown, 2017; McDonough & Braungart,2002).</p> <p>This thesis aims to achieve a zero-waste mediumdensity housing design for New Zealand that maximisesthe use of biodegradable building materials. However,it is hypothesised along with Sassi (2006) that bothbiodegradable and reusable components will be requiredto achieve zero waste. This thesis also seeks the mostsuitable biodegradable materials for New Zealand’sclimate and the optimum construction approach tosupport these materials. This research also contributestowards reducing the embodied energy and greenhousegas emissions of the New Zealand building industry.</p> <p>The most suitable biodegradable materials for New Zealandwere selected based on availability and performance foundto be untreated timber, clay plaster and, straw and woolinsulation. In-situ construction, prefabricated wall panelsand, standardised block modules were then compared tofind the most suitable construction approach to supportthese materials and was found to be prefabricated wallpanels. A building design was then pursued driven by theneed to protect the biodegradable insulation materialsfrom moisture infiltration. The design is then integratedwithin a site in Upper Hutt to address the demand forhousing densification and demonstrate the potential forapplication of biodegradable materials to an urban settingat the scale of a medium density housing development.</p> <p>A detailed BIM model of the building design was producedfrom which volumes of individual components wereextracted and categorised regarding their biodegradabilityor reusability or lack thereof. This was done to determinethe proportion and quantity of biodegradable materials andwaste generated by the design. An identical design usingconventional New Zealand materials and constructiontechniques was also produced for comparison.</p> <p>Biodegradable materials made up 82% of the final designconstruction by volume and 91% of the construction byvolume was diverted from landfill (reusable componentsmade up 9% of the construction). This suggests thatAuckland Council’s goal of 60% waste reduction by 2030 istheoretically possible for developments of a similar scaleto the final design. However, the goal of ‘zero waste’ by2040 seems unobtainable even if significant improvementsare made.</p>

2021 ◽  
Author(s):  
Jacob Coleman

<p><b>New Zealand has a serious construction and demolition(C&D) waste issue. A Ministry for the Environment studyfrom 2019 found that 2.9 million tonnes of C&D waste aredisposed of at C&D fills nationwide every year (Ministry forthe Environment, 2019). Averaged across the populationthis equates to nearly 600 kg per person. AucklandCouncil’s ‘Low Carbon Auckland’ plan presents totallandfill waste reduction targets of 30% by 2020, 60% by2030, and ‘zero waste’ by 2040 (Auckland Council, 2014).</b></p> <p>To achieve this goal of zero waste, building materialsmust operate within a closed loop (Baker-Brown, 2017;McDonough & Braungart, 2002). Materials can either bea part of a closed organic loop (natural biodegradablematerials) or a closed technical loop (man-made cycleof reuse) (Baker-Brown, 2017; McDonough & Braungart,2002).</p> <p>This thesis aims to achieve a zero-waste mediumdensity housing design for New Zealand that maximisesthe use of biodegradable building materials. However,it is hypothesised along with Sassi (2006) that bothbiodegradable and reusable components will be requiredto achieve zero waste. This thesis also seeks the mostsuitable biodegradable materials for New Zealand’sclimate and the optimum construction approach tosupport these materials. This research also contributestowards reducing the embodied energy and greenhousegas emissions of the New Zealand building industry.</p> <p>The most suitable biodegradable materials for New Zealandwere selected based on availability and performance foundto be untreated timber, clay plaster and, straw and woolinsulation. In-situ construction, prefabricated wall panelsand, standardised block modules were then compared tofind the most suitable construction approach to supportthese materials and was found to be prefabricated wallpanels. A building design was then pursued driven by theneed to protect the biodegradable insulation materialsfrom moisture infiltration. The design is then integratedwithin a site in Upper Hutt to address the demand forhousing densification and demonstrate the potential forapplication of biodegradable materials to an urban settingat the scale of a medium density housing development.</p> <p>A detailed BIM model of the building design was producedfrom which volumes of individual components wereextracted and categorised regarding their biodegradabilityor reusability or lack thereof. This was done to determinethe proportion and quantity of biodegradable materials andwaste generated by the design. An identical design usingconventional New Zealand materials and constructiontechniques was also produced for comparison.</p> <p>Biodegradable materials made up 82% of the final designconstruction by volume and 91% of the construction byvolume was diverted from landfill (reusable componentsmade up 9% of the construction). This suggests thatAuckland Council’s goal of 60% waste reduction by 2030 istheoretically possible for developments of a similar scaleto the final design. However, the goal of ‘zero waste’ by2040 seems unobtainable even if significant improvementsare made.</p>


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 150 ◽  
Author(s):  
Jouri Kanters

Stricter building regulations have resulted in the construction of buildings with a low energy use during the operation phase. It has now become increasingly important to also look at the embodied energy, because it might, over the lifespan of the building, equal the energy used for operating the building. One way to decrease the embodied energy is to reuse building materials and components or to prepare the building for deconstruction; a term called design for deconstruction (DfD). While design for deconstruction has showed environmental, social, and economic benefits, hardly any building designed and built today is designed for deconstruction. The aim of this literature review is to understand the state-of-art of design for deconstruction and how it affects the design process. In most of the literature, general construction principles are specified that promote the design for deconstruction and focus on (a) the overall building design, (b) materials and connections, (c) construction and deconstruction phase, and (d) communication, competence, and knowledge. Furthermore, the reuse potential of specific building materials is discussed, as well as the available tools for DfD. Additionally, the current barriers for DfD as specified by the literature show lack of competence, regulations, and other related elements.


2021 ◽  
Author(s):  
◽  
J. Andrew Alcorn

<p>"How do you build a sustainable house in New Zealand? - is it even possible?" This thesis is structured in three parts to answer this question. The first part asks, then answers, "What is sustainability?", "How do you measure sustainability?" and "How do you know when you have reached sustainability - what is its limit?" The second part describes the methodologies for conducting embodied energy and CO2 analysis. The third part applies the results of the sustainability definition, and the energy and CO2 methodologies to a series of house designs. Part 1 defines, measures, and establishes a limit for sustainability. It reviews the history of sustainability and sustainable development. A distillation of what is being sought by the various parties to the sustainability debate then contributes to a checklist of essential requirements for a functional definition of sustainability. Addressing climate change is shown to be the major requirement. The checklist enables answers to the questions about measuring sustainability, and knowing when its limit has been reached, and leads to a functional definition: Sustainability meets the needs of the present without annual CO2 emissions exceeding what the planet can absorb. The requirements for sustainability indicator methods are examined. A robust way of comparing environment impacts is introduced. Several common sustainability indicators are examined against the requirements, but are found wanting, while two are found to be effective: energy and CO2 analysis. Human population and annual global carbon absorption are used to identify global and per-capita sustainability limits, which can be applied at many scales to many activities. They are applied to New Zealand's housing sector to identify a sustainable annual per-house emissions target, including construction, maintenance, and operation. Part 2 reviews the methodologies to measure and delimit sustainability using embodied energy and embodied CO2 analysis. A new, fast, accurate, and reliable process-based hybrid analysis method developed for this research is used to derive embodied energy and CO2 coefficients for building materials. Part 3 applies the results of the sustainability definition and limit, and the energy and CO2 methodologies and coefficients from analysing building materials, to a series of house designs within New Zealand and global contexts. A spreadsheet-based calculator developed for this analysis that has potential beyond this thesis is described. A method is presented for annualising emissions to fairly account for differing building components' lifetimes. Finally, a sustainable house is shown to be possible by combining several strategies to meet the challenging sustainable emissions target. Technologies that reduce grid electricity use - solar hot water, PV, and wind-generators - are crucial, cutting emissions the most. Bio-based materials sequestering carbon are the second most important strategy: strawbale insulation to ~R10, and timber for framing, cladding, windows, linings, and roofing. Efficient appliances, lighting, and other low-emission materials were also helpful. Other key outcomes were: hot water heating emits the most CO2, double any other category; heating energy emissions are smaller than any other category; CO2-optimal conventional insulation levels are ~R5; CO2 flux of materials is double operating energy CO2 for sustainable houses.</p>


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Hao Li

After the reform and opening up, China's economy has developed rapidly. But in the process of economic development, the ecological environment has also paid a huge price. The destruction of the ecological environment directly affects survival and development of people. Therefore, it is necessary to strengthen environmental governance. Everyone has also begun to focus on low-carbon development. The construction industry is a serious waste of building materials with large energy dissipation. Therefore it is also a key industry for low-carbon transformation. This article mainly analyzes low-carbon building design technology and studies specific development strategies.


2021 ◽  
Author(s):  
◽  
Brian Berg

<p>This research simplifies the calculation of the Initial Embodied Energy (iEE) for commercial office buildings. The result is the improved integration of Life Cycle Assessment (LCA) assessments of building materials into the early stages of the building design process (sketch design). This maximises the effectiveness of implementing design solutions to lower a building’s environmental impact.  This thesis research proposes that building Information Models (BIM) will make calculating building material quantities easier, to simplify LCA calculations, all to improve their integration into existing sketch design phase practices, and building design decisions. This is achieved by developing a methodology for using BIM LCA tools to calculate highly detailed material quantities from a simple BIM model of sketch design phase building information. This is methodology is called an Initial Embodied Energy Building Information Model Life Cycle Assessment Building Performance Sketch (iEE BIM LCA BPS). Using this methodology calculates iEE results that are accurate, and represent a sufficient proportion (complete) of a building’s total iEE consumption, making them useful for iEE decision-making.  iEE is one example of a LCA-based indicator that was used to test, and prove the feasibility of the iEE BIM LCA BPS methodology. Proving this, the research method tests the accuracy that a BIM model can calculate case study building’s building material quantities. This included developing; a methodology for how to use the BIM tool Revit to calculate iEE; a functional definition of an iEE BIM LCA BPS based on the environmental impact, and sketch design decisions effecting building materials, and elements; and an EE simulation calibration accuracy assessment methodology, complete with a function definition of the accuracy required of an iEE simulation to ensure it’s useful for sketch design decision-making.  Two main tests were conducted as part of proving the iEE BIM LCA BPS’ feasibility. Test one assessed and proved that the iEE BIM LCA BPS model based on sketch design information does represent a sufficient proportion (complete) of a building’s total iEE consumption, so that are useful for iEE decision-making. This was tested by comparing the building material quantities from a SOQ (SOQ) produced to a sketch design level of detail (truth model 3), to an as-built level of detail, defined as current iEE best practices (truth model 1). Subsequent to proving that the iEE BIM LCA BPS is sufficiently complete, test two assessed if a BIM model and tool could calculate building material quantities accurately compared to truth model 3. The outcome was answering the research question of, how detailed does a BIM model need to be to calculate accurate building material quantities for a building material LCA (LCA) assessment?  The inference of this thesis research is a methodology for using BIM models to calculate the iEE of New Zealand commercial office buildings in the early phases of the design process. The outcome was that a building design team’s current level of sketch design phase information is sufficiently detailed for sketch design phase iEE assessment. This means, that iEE and other LCA-based assessment indicators can be integrated into a design team’s existing design process, practices, and decisions, with no restructuring required.</p>


2021 ◽  
Author(s):  
◽  
Brian Berg

<p>This research simplifies the calculation of the Initial Embodied Energy (iEE) for commercial office buildings. The result is the improved integration of Life Cycle Assessment (LCA) assessments of building materials into the early stages of the building design process (sketch design). This maximises the effectiveness of implementing design solutions to lower a building’s environmental impact.  This thesis research proposes that building Information Models (BIM) will make calculating building material quantities easier, to simplify LCA calculations, all to improve their integration into existing sketch design phase practices, and building design decisions. This is achieved by developing a methodology for using BIM LCA tools to calculate highly detailed material quantities from a simple BIM model of sketch design phase building information. This is methodology is called an Initial Embodied Energy Building Information Model Life Cycle Assessment Building Performance Sketch (iEE BIM LCA BPS). Using this methodology calculates iEE results that are accurate, and represent a sufficient proportion (complete) of a building’s total iEE consumption, making them useful for iEE decision-making.  iEE is one example of a LCA-based indicator that was used to test, and prove the feasibility of the iEE BIM LCA BPS methodology. Proving this, the research method tests the accuracy that a BIM model can calculate case study building’s building material quantities. This included developing; a methodology for how to use the BIM tool Revit to calculate iEE; a functional definition of an iEE BIM LCA BPS based on the environmental impact, and sketch design decisions effecting building materials, and elements; and an EE simulation calibration accuracy assessment methodology, complete with a function definition of the accuracy required of an iEE simulation to ensure it’s useful for sketch design decision-making.  Two main tests were conducted as part of proving the iEE BIM LCA BPS’ feasibility. Test one assessed and proved that the iEE BIM LCA BPS model based on sketch design information does represent a sufficient proportion (complete) of a building’s total iEE consumption, so that are useful for iEE decision-making. This was tested by comparing the building material quantities from a SOQ (SOQ) produced to a sketch design level of detail (truth model 3), to an as-built level of detail, defined as current iEE best practices (truth model 1). Subsequent to proving that the iEE BIM LCA BPS is sufficiently complete, test two assessed if a BIM model and tool could calculate building material quantities accurately compared to truth model 3. The outcome was answering the research question of, how detailed does a BIM model need to be to calculate accurate building material quantities for a building material LCA (LCA) assessment?  The inference of this thesis research is a methodology for using BIM models to calculate the iEE of New Zealand commercial office buildings in the early phases of the design process. The outcome was that a building design team’s current level of sketch design phase information is sufficiently detailed for sketch design phase iEE assessment. This means, that iEE and other LCA-based assessment indicators can be integrated into a design team’s existing design process, practices, and decisions, with no restructuring required.</p>


2019 ◽  
Author(s):  
Anjar Primasetra

The largest of CO2 emissions on earth derives from construction activities. It is necessary to solve the problem to reduce the impact of CO2 emissions. One of the solution to reduce the impact of CO2 emission because of construction activity is using re-used material for building construction, such as re-used shipping container because the re-used material has low embodied energy. This paper has three purposes, and there are: explaining the application of re-used containers as building materials in the context of green architecture, explaining the application of building design using re-used containers as material, and explaining the advantages and disadvantages of used containers as building materials. Creative Hub ITSB as a case study owned by the campus of ITSB. The building construction consists of 20 units of a re-used container (20 feet size). The prefabrication construction uses for each steel material. Each component of the building assembled in the workshop, then it delivered to site by truck. The main issues that need to be solved are a matter of the delivery system, the structure, and joints, and the component assembly. Cross-ventilation system and insulating material also crucial because it can reduce building temperature.


Author(s):  
Salim KOURTAA ◽  
Morgan Chabannes ◽  
Frederic Becquart ◽  
Nor Edine Abriak

In the context of global warming, the built environment offers relevant opportunities to reduce GHG emissions that underlie climate change. In particular, this can be achieved with the development of low-embodied energy building materials such as bio-based concretes. Hemp concrete has been the subject of many investigations in the field of non-load bearing infill walls in France since the early 1990s. In addition to hygrothermal performances, the use of crop by-products definitely helps to limit the carbon footprint. Hemp concretes are often produced by mixing the plant aggregates with lime-based binders. The latter have many benefits among which the water vapor permeability. However, CO2 emissions due to the decarbonation of limestone for the production of lime largely contribute to the overall environmental balance of these materials. The use of natural pozzolans (volcanic scoria) combined with hydrated lime goes back to the Greco-Roman period and reduces carbon emissions. Nonetheless, it does not necessarily meet the issue related to the depletion of granular natural resources. Hence, this study deals with the design of a new low-carbon binder based on marine dredged sediment seen as an alternative strategic granular resource that can be considered renewable. The sediment comes from the Port of Dunkirk in the North of France and is mainly composed of silt and quartz sand. It was finely ground and compared to a lowly reactive basaltic pozzolan. Lime-pozzolan pastes were prepared and stored in a moist environment under room (20°C) and high temperature (50°C). The hardening kinetics of pastes was followed through mineralogical studies (TGA, XRD) and compressive strength development. The results showed that the hardening of pastes including the marine sediment was suitable in the case of samples stored at 50°C and make it possible to use such a binder for precast bio-based concretes.


Author(s):  
Andrea Moňoková ◽  
Silvia Vilčeková ◽  
Eva Krídlová Burdová

The aim of this paper is to summarize knowledge of green technologies and their applications in buildings, as well as high performance green buildings. Two alternatives of family house design are performed. The first alternative uses conventional building materials and it doesn’t follow the sustainability principles. On the other hand, the second one is designed by using the environmentally friendly materials and with sustainability principles in mind. Designs of conventional and green family house are mutually compared from energy efficiency, embodied energy and greenhouse gas emissions such as CO2eq. and SO2eq. point of view. A special focus is put on the sustainability assessment of designed houses by the Slovak environmental assessment system of buildings.


2021 ◽  
Author(s):  
◽  
Vincent Maxwell

<p>The recently exhausted Three Kings Quarry in central Auckland suburbia is currently being prepared for housing development. As a suburb within New Zealand’s fastest growing city, housing pressure and intensification policies mean that higher density design will be a key focus of remediation. Medium Density Design is a relatively young model of higher density housing in New Zealand and has developed a strong negative stigma, engendered by the abundance of unresponsive medium density developments which struggle, both physically and visually, to connect with Auckland’s low density suburban culture. Plans to only partially fill the site have been met with opposition by the community as the quarry landscape is seen as an obstacle for connection within the suburb and unfit for human inhabitation. Because of these negative feelings towards both the quarry and medium density design, locals are anxious any development within the quarry will follow a similar Medium Density housing model that turns its back on its context and community while failing to connect to the Three Kings context.  This research argues that by designing with the slope and existing condition of the quarry, medium density design can produce a scheme that meets the desires of the community and builds a unique and relevant identity for Three Kings. This thesis proposes this can be achieved by acknowledging the significance of the industrial landscape and designing with landform features and environmental systems; through community focussed medium density design; and by taking advantage of opportunities of mass housing design on the slope. These issues are tackled on the urban scale through design of a master plan, as well as cluster and dwelling scale design proposals.</p>


Sign in / Sign up

Export Citation Format

Share Document