scholarly journals Bleaching of the Cnidarian-Dinoflagellate Symbiosis: Aspects of Innate Immunity and the Role of Nitric Oxide

2021 ◽  
Author(s):  
◽  
Thomas D. Hawkins

<p>Driven by global warming and the increasing frequency of high temperature anomalies, the collapse of the cnidarian-dinoflagellate symbiosis (known as "bleaching" due to the whitening of host tissues) is contributing to worldwide coral reef decline. Much is known about the consequences of bleaching, but despite over 20 years of effort, we still know little about the physiological mechanisms involved. This is particularly true when explaining the differential susceptibility of coral hosts and their algal partners (genus Symbiodinium) to rising temperatures.  Work carried out over the past 10 years suggests that bleaching may represent an innate immune-like host response to dysfunctional symbionts. This response involves the synthesis of nitric oxide (NO), a signalling molecule widely dispersed throughout the tree of life and implicated in diverse cellular phenomena. However, the source(s) of NO in the cnidarian-dinoflagellate association have been the subject of debate, and almost nothing is known of the capacity for differential NO synthesis among different host species or symbiont types.  The aim of this study was to elucidate the role of NO in the temperature-induced breakdown of the cnidarian-dinoflagellate symbiosis and to assess differences in NO-mediated physiology at the level of both symbiont and host. The specific objectives were (i) to quantify NO synthesis in different types of symbiotic dinoflagellates, (ii) to determine a role for NO in the collapse of the cnidarian-dinoflagellate symbiosis, (iii) to confirm whether NO itself - as opposed to its more reactive derivatives - is capable of mediating cnidarian bleaching, and (iv) to measure the synthesis of NO and the regulation of associated pathways in different reef corals undergoing bleaching.  This thesis demonstrates that both partners of the symbiosis have a capacity for synthesising NO when stimulated by elevated temperature. However, their contributions to NO synthesis in the intact symbiosis may not be equal, as heightened symbiont NO production invariably occurred after that of the host, and at a time when bleaching had already commenced. Closer examination of host-derived NO in the model anemone Aiptasia pulchella revealed that the compound most likely mediates bleaching through apoptotic-like cell death pathways, as either removing NO or inhibiting the activity of an important apoptosis-regulating enzyme could alleviate bleaching. NO's involvement in thermal bleaching also seems to be independent of its conversion to more toxic radicals such as peroxynitrite (ONOO-), which, although present at elevated temperature, had little influence on symbiont loss in A. pulchella. [...]  As is the case in a wide variety of animal-microbe interactions, NO appears to mediate the cnidarian-dinoflagellate symbiosis by influencing the activity of host apoptotic-like pathways. Interestingly, the activation of these host responses at elevated temperature may occur before the dinoflagellate becomes photosynthetically compromised. As such, the model of bleaching as simply a response to symbiont photoinhibition could require modification. Furthermore, the differential sensitivity of symbiont types to NO, coupled with the differential regulation of NO-synthetic and apoptotic pathways in the host, could contribute to corals' varying bleaching susceptibilities.  This thesis provides vital insights into the cell biology of the coral-dinoflagellate symbiosis and the events underpinning its breakdown during temperature stress. It also encourages a greater research emphasis on understanding physiological responses at the level of the coral host as well as during the early stages of a bleaching event.</p>

2021 ◽  
Author(s):  
◽  
Thomas D. Hawkins

<p>Driven by global warming and the increasing frequency of high temperature anomalies, the collapse of the cnidarian-dinoflagellate symbiosis (known as "bleaching" due to the whitening of host tissues) is contributing to worldwide coral reef decline. Much is known about the consequences of bleaching, but despite over 20 years of effort, we still know little about the physiological mechanisms involved. This is particularly true when explaining the differential susceptibility of coral hosts and their algal partners (genus Symbiodinium) to rising temperatures.  Work carried out over the past 10 years suggests that bleaching may represent an innate immune-like host response to dysfunctional symbionts. This response involves the synthesis of nitric oxide (NO), a signalling molecule widely dispersed throughout the tree of life and implicated in diverse cellular phenomena. However, the source(s) of NO in the cnidarian-dinoflagellate association have been the subject of debate, and almost nothing is known of the capacity for differential NO synthesis among different host species or symbiont types.  The aim of this study was to elucidate the role of NO in the temperature-induced breakdown of the cnidarian-dinoflagellate symbiosis and to assess differences in NO-mediated physiology at the level of both symbiont and host. The specific objectives were (i) to quantify NO synthesis in different types of symbiotic dinoflagellates, (ii) to determine a role for NO in the collapse of the cnidarian-dinoflagellate symbiosis, (iii) to confirm whether NO itself - as opposed to its more reactive derivatives - is capable of mediating cnidarian bleaching, and (iv) to measure the synthesis of NO and the regulation of associated pathways in different reef corals undergoing bleaching.  This thesis demonstrates that both partners of the symbiosis have a capacity for synthesising NO when stimulated by elevated temperature. However, their contributions to NO synthesis in the intact symbiosis may not be equal, as heightened symbiont NO production invariably occurred after that of the host, and at a time when bleaching had already commenced. Closer examination of host-derived NO in the model anemone Aiptasia pulchella revealed that the compound most likely mediates bleaching through apoptotic-like cell death pathways, as either removing NO or inhibiting the activity of an important apoptosis-regulating enzyme could alleviate bleaching. NO's involvement in thermal bleaching also seems to be independent of its conversion to more toxic radicals such as peroxynitrite (ONOO-), which, although present at elevated temperature, had little influence on symbiont loss in A. pulchella. [...]  As is the case in a wide variety of animal-microbe interactions, NO appears to mediate the cnidarian-dinoflagellate symbiosis by influencing the activity of host apoptotic-like pathways. Interestingly, the activation of these host responses at elevated temperature may occur before the dinoflagellate becomes photosynthetically compromised. As such, the model of bleaching as simply a response to symbiont photoinhibition could require modification. Furthermore, the differential sensitivity of symbiont types to NO, coupled with the differential regulation of NO-synthetic and apoptotic pathways in the host, could contribute to corals' varying bleaching susceptibilities.  This thesis provides vital insights into the cell biology of the coral-dinoflagellate symbiosis and the events underpinning its breakdown during temperature stress. It also encourages a greater research emphasis on understanding physiological responses at the level of the coral host as well as during the early stages of a bleaching event.</p>


2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


2005 ◽  
Vol 289 (6) ◽  
pp. F1324-F1332 ◽  
Author(s):  
Manish M. Tiwari ◽  
Robert W. Brock ◽  
Judit K. Megyesi ◽  
Gur P. Kaushal ◽  
Philip R. Mayeux

Acute renal failure (ARF) is a frequent and serious complication of endotoxemia caused by lipopolysaccharide (LPS) and contributes significantly to mortality. The present studies were undertaken to examine the roles of nitric oxide (NO) and caspase activation on renal peritubular blood flow and apoptosis in a murine model of LPS-induced ARF. Male C57BL/6 mice treated with LPS ( Escherichia coli) at a dose of 10 mg/kg developed ARF at 18 h. Renal failure was associated with a significant decrease in peritubular capillary perfusion. Vessels with no flow increased from 7 ± 3% in the saline group to 30 ± 4% in the LPS group ( P < 0.01). Both the inducible NO synthase inhibitor l- N6-1-iminoethyl-lysine (l-NIL) and the nonselective caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD) prevented renal failure and reversed perfusion deficits. Renal failure was also associated with an increase in renal caspase-3 activity and an increase in renal apoptosis. Both l-NIL and Z-VAD prevented these changes. LPS caused an increase in NO production that was blocked by l-NIL but not by Z-VAD. Taken together, these data suggest NO-mediated activation of renal caspases and the resulting disruption in peritubular blood flow are an important mechanism of LPS-induced ARF.


Author(s):  
Antoine Berger ◽  
Alexandre Boscari ◽  
Alain Puppo ◽  
Renaud Brouquisse

Abstract The interaction between legumes and rhizobia leads to the establishment of a symbiotic relationship between plant and bacteria. This is characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Nitric oxide (NO) accumulates at each stage of the symbiotic process. NO is involved in defense responses, nodule organogenesis and development, nitrogen fixation metabolism, and senescence induction. During symbiosis, either successively or simultaneously, NO regulates gene expression, modulates enzyme activities, and acts as a metabolic intermediate in energy regeneration processes via phytoglobin-NO respiration and the bacterial denitrification pathway. Due to the transition from normoxia to hypoxia during nodule formation, and the progressive presence of the bacterial partner in the growing nodules, NO production and degradation pathways change during the symbiotic process. This review analyzes the different source and degradation pathways of NO, and highlights the role of nitrate reductases and hemoproteins of both the plant and bacterial partners in the control of NO accumulation.


2017 ◽  
Vol 398 (3) ◽  
pp. 319-329 ◽  
Author(s):  
Christine C. Helms ◽  
Xiaohua Liu ◽  
Daniel B. Kim-Shapiro

Abstract Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell.


2003 ◽  
Vol 1 (3) ◽  
pp. 113-117 ◽  
Author(s):  
M. Myronidou ◽  
B. Kokkas ◽  
A. Kouyoumtzis ◽  
N. Gregoriadis ◽  
A. Lourbopoulos ◽  
...  

In these studies we investigated if losartan, an AT1- receptor blocker has any beneficial effect on NO production from the bovine aortic preparations in vitro while under stimulation from angiotensin II. Experiments were performed on intact specimens of bovine thoracic aorta, incubated in Dulbeco's MOD medium in a metabolic shaker for 24 hours under 95 % O2 and 5 % CO2 at a temperature of 37°C. We found that angiotensin II 1nM−10 μM does not exert any statistically significant action on NO production. On the contrary, angiotensin II 10nM increases the production of NO by 58.14 % (from 12.16 + 2.9 μm/l to 19.23 + 4.2 μm/l in the presence of losartan 1nM (P<0.05). Nitric oxide levels depend on both rate production and rate catabolism or chemical inactivation. Such an equilibrium is vital for the normal function of many systems including the cardiovascular one. The above results demonstrate that the blockade of AT1-receptors favors the biosynthesis of NO and indicate the protective role of losartan on the vascular wall.


2000 ◽  
Vol 279 (2) ◽  
pp. H726-H732 ◽  
Author(s):  
Don D. Sheriff ◽  
Christopher D. Nelson ◽  
Ryan K. Sundermann

We sought to test the role of nitric oxide (NO) in governing skeletal muscle (iliac) vascular conductance during treadmill locomotion in dogs ( n = 6; 3.2 and 6.4 km/h at 0% grade, and 6.4 km/h at 10% grade). As seen previously, the increase in muscle vascular conductance accompanying treadmill locomotion was little influenced by NO synthase inhibition alone with N ω-nitro-l-arginine methyl ester (l-NAME, 10 mg/kg iv), but the absolute value of conductance achieved during locomotion was reduced. Such ambiguous results provide an unclear picture regarding the importance of NO during locomotion. However, muscle vasodilation is normally restrained by the sympathetic system during locomotion. Thus a significant contribution by NO to the increase in vascular conductance that accompanies locomotion could be masked by partial withdrawal of the competing influence of sympathetic vasoconstrictor nerve activity secondary to the rise in arterial pressure following systemicl-NAME administration. To test this possibility, we compared the rise in muscle vascular conductance before and afterl-NAME treatment while ganglionic transmission was blocked by hexamethonium. Under these conditions, l-NAME significantly reduced both the rise in vascular conductance (by 32%, P < 0.001) and the absolute level of vascular conductance (by 30%, P < 0.001) achieved during locomotion with no effect on blood flow. Thus augmented NO production normally provides a significant drive to relax vascular smooth muscle in active skeletal muscle during locomotion. Potential deficits stemming from the absence of NO following l-NAME treatment are masked by less intense sympathetic restraint when autonomic function is intact.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1484 ◽  
Author(s):  
Tamara Lechón ◽  
Luis Sanz ◽  
Inmaculada Sánchez-Vicente ◽  
Oscar Lorenzo

The cue1 nitric oxide (NO) overproducer mutants are impaired in a plastid phosphoenolpyruvate/phosphate translocator, mainly expressed in Arabidopsis thaliana roots. cue1 mutants present an increased content of arginine, a precursor of NO in oxidative synthesis processes. However, the pathways of plant NO biosynthesis and signaling have not yet been fully characterized, and the role of CUE1 in these processes is not clear. Here, in an attempt to advance our knowledge regarding NO homeostasis, we performed a deep characterization of the NO production of four different cue1 alleles (cue1-1, cue1-5, cue1-6 and nox1) during seed germination, primary root elongation, and salt stress resistance. Furthermore, we analyzed the production of NO in different carbon sources to improve our understanding of the interplay between carbon metabolism and NO homeostasis. After in vivo NO imaging and spectrofluorometric quantification of the endogenous NO levels of cue1 mutants, we demonstrate that CUE1 does not directly contribute to the rapid NO synthesis during seed imbibition. Although cue1 mutants do not overproduce NO during germination and early plant development, they are able to accumulate NO after the seedling is completely established. Thus, CUE1 regulates NO homeostasis during post-germinative growth to modulate root development in response to carbon metabolism, as different sugars modify root elongation and meristem organization in cue1 mutants. Therefore, cue1 mutants are a useful tool to study the physiological effects of NO in post-germinative growth.


Parasitology ◽  
1999 ◽  
Vol 118 (2) ◽  
pp. 139-143 ◽  
Author(s):  
N. FAVRE ◽  
B. RYFFEL ◽  
W. RUDIN

Nitric oxide (NO) production has been suggested to play a role as effector molecule in the control of the malarial infections. However, the roles of this molecule are debated. To assess whether blood-stage parasite killing is NO dependent, we investigated the course of blood-stage Plasmodium chabaudi chabaudi (Pcc) infections in inducible nitric oxide synthase (iNOS)-deficient mice. Parasitaemia, haematological alterations, and survival were not affected by the lack of iNOS. To exclude a role of NO produced by other NOS, controls included NO suppression by oral administration of aminoguanidine (AG), a NOS inhibitor. As in iNOS-deficient mice, no difference in the parasitaemia course, survival and haematological values was observed after AG treatment. Our results indicate that NO production is not required for protection against malaria in our murine experimental model. However, C57BL/6 mice treated with AG lost their resistance to Pcc infections, suggesting that the requirement for NO production for parasite killing in murine blood-stage malaria might be strain dependent.


Sign in / Sign up

Export Citation Format

Share Document