scholarly journals Using conservation translocations to assess the impact of anthropogenic climate change on a cold-adapted reptile, the tuatara (Sphenodon punctatus)

2021 ◽  
Author(s):  
◽  
Stephanie J. Price

<p>Anthropogenic climate change is progressing at a rate unprecedented in the past 65 million years and is a significant conservation concern. The associated biotic and abiotic impacts are expected to have substantial effects on global biodiversity, with some species potentially more vulnerable than others. The tuatara (Sphenodon punctatus) is a New Zealand endemic reptile and of particular interest as it is a slowly reproducing, range-restricted, cold-adapted ectotherm with temperature-dependent sex determination. Consequently, tuatara could be particularly vulnerable to rising air temperatures and conservation translocations have been key components of tuatara conservation efforts. Knowledge of how the tuatara might be affected by warmer climates will help inform where future conservation efforts are best directed, practices to avoid and which sites might be most suitable for the establishment of populations. The translocation of 176 adult tuatara in October 2012 from Stephens Island in New Zealand’s Cook Strait to four latitudinally distant North Island sites offered the opportunity to study the responses of tuatara in a range of environments. The comparatively warmer, drier climates of several sites provided surrogates for temporal climate change, enabling an assessment of how a warming climate might impact tuatara, and how they might respond. Using field observations, laboratory analysis and controlled experiments I investigated the short-term success of the translocations, the influence of translocation and climate on tuatara enteric bacterial communities and parasites, as well as how warmer climates might influence nocturnal activity, thermoregulatory opportunities and learning ability. I found several translocated populations to be progressing favourably, and found evidence that tuatara may exhibit enhanced growth at warmer, less densely-populated sites, suggesting that further translocations to lower latitude sites might be a viable conservation strategy. However, high population density at one translocation site was a concern and management recommendations were made to enable the dispersal of individuals. I detected Salmonella Saintpaul for the first time in a live tuatara, Campylobacter spp. was identified as a likely common commensal organism, and no measurable impact of translocation or climate on bacterial prevalence was observed, suggesting no substantial risk of climate warming to the susceptibility of tuatara to these bacteria. Tick populations were negatively impacted by translocation-associated factors following release but subsequently recovered at most sites and mites were not found on any translocated tuatara. Diurnal and nocturnal activities were positively influenced by air temperature, up to an upper threshold, and assessment of the site-specific thermal climates suggested that tuatara at warmer sites may benefit from increased opportunities for emergence and the attainment of preferred body temperatures throughout the year, though a higher frequency of restrictive air temperatures over summer may also reduce emergence opportunities. Experimental work showed that warmer air temperatures may enhance learning in tuatara, which could improve their ability to cope with challenging environments under climate change. However, body size was also an influential component of learning ability and further research is needed to build on these initial findings. I conclude that tuatara may experience overall benefits from further translocations to warmer sites and warming climates at currently cooler sites, which suggests that other cold-adapted reptiles with similar thermal tolerances may also see initial benefits under climate warming, though further monitoring is required to determine longer-term translocation success. Equally, while warmer air temperatures were not found to be detrimental to tuatara, they still pose a risk to population viability and further work is required on the impacts of associated abiotic factors like drought, and how populations of this long-lived species may be affected if and when climate warming exceeds the upper temperature rise of ~5°C predicted by the 2100s.</p>

2021 ◽  
Author(s):  
◽  
Stephanie J. Price

<p>Anthropogenic climate change is progressing at a rate unprecedented in the past 65 million years and is a significant conservation concern. The associated biotic and abiotic impacts are expected to have substantial effects on global biodiversity, with some species potentially more vulnerable than others. The tuatara (Sphenodon punctatus) is a New Zealand endemic reptile and of particular interest as it is a slowly reproducing, range-restricted, cold-adapted ectotherm with temperature-dependent sex determination. Consequently, tuatara could be particularly vulnerable to rising air temperatures and conservation translocations have been key components of tuatara conservation efforts. Knowledge of how the tuatara might be affected by warmer climates will help inform where future conservation efforts are best directed, practices to avoid and which sites might be most suitable for the establishment of populations. The translocation of 176 adult tuatara in October 2012 from Stephens Island in New Zealand’s Cook Strait to four latitudinally distant North Island sites offered the opportunity to study the responses of tuatara in a range of environments. The comparatively warmer, drier climates of several sites provided surrogates for temporal climate change, enabling an assessment of how a warming climate might impact tuatara, and how they might respond. Using field observations, laboratory analysis and controlled experiments I investigated the short-term success of the translocations, the influence of translocation and climate on tuatara enteric bacterial communities and parasites, as well as how warmer climates might influence nocturnal activity, thermoregulatory opportunities and learning ability. I found several translocated populations to be progressing favourably, and found evidence that tuatara may exhibit enhanced growth at warmer, less densely-populated sites, suggesting that further translocations to lower latitude sites might be a viable conservation strategy. However, high population density at one translocation site was a concern and management recommendations were made to enable the dispersal of individuals. I detected Salmonella Saintpaul for the first time in a live tuatara, Campylobacter spp. was identified as a likely common commensal organism, and no measurable impact of translocation or climate on bacterial prevalence was observed, suggesting no substantial risk of climate warming to the susceptibility of tuatara to these bacteria. Tick populations were negatively impacted by translocation-associated factors following release but subsequently recovered at most sites and mites were not found on any translocated tuatara. Diurnal and nocturnal activities were positively influenced by air temperature, up to an upper threshold, and assessment of the site-specific thermal climates suggested that tuatara at warmer sites may benefit from increased opportunities for emergence and the attainment of preferred body temperatures throughout the year, though a higher frequency of restrictive air temperatures over summer may also reduce emergence opportunities. Experimental work showed that warmer air temperatures may enhance learning in tuatara, which could improve their ability to cope with challenging environments under climate change. However, body size was also an influential component of learning ability and further research is needed to build on these initial findings. I conclude that tuatara may experience overall benefits from further translocations to warmer sites and warming climates at currently cooler sites, which suggests that other cold-adapted reptiles with similar thermal tolerances may also see initial benefits under climate warming, though further monitoring is required to determine longer-term translocation success. Equally, while warmer air temperatures were not found to be detrimental to tuatara, they still pose a risk to population viability and further work is required on the impacts of associated abiotic factors like drought, and how populations of this long-lived species may be affected if and when climate warming exceeds the upper temperature rise of ~5°C predicted by the 2100s.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yukiko Hirabayashi ◽  
Haireti Alifu ◽  
Dai Yamazaki ◽  
Yukiko Imada ◽  
Hideo Shiogama ◽  
...  

AbstractThe ongoing increases in anthropogenic radiative forcing have changed the global water cycle and are expected to lead to more intense precipitation extremes and associated floods. However, given the limitations of observations and model simulations, evidence of the impact of anthropogenic climate change on past extreme river discharge is scarce. Here, a large ensemble numerical simulation revealed that 64% (14 of 22 events) of floods analyzed during 2010-2013 were affected by anthropogenic climate change. Four flood events in Asia, Europe, and South America were enhanced within the 90% likelihood range. Of eight snow-induced floods analyzed, three were enhanced and four events were suppressed, indicating that the effects of climate change are more likely to be seen in the snow-induced floods. A global-scale analysis of flood frequency revealed that anthropogenic climate change enhanced the occurrence of floods during 2010-2013 in wide area of northern Eurasia, part of northwestern India, and central Africa, while suppressing the occurrence of floods in part of northeastern Eurasia, southern Africa, central to eastern North America and South America. Since the changes in the occurrence of flooding are the results of several hydrological processes, such as snow melt and changes in seasonal and extreme precipitation, and because a climate change signal is often not detectable from limited observation records, large ensemble discharge simulation provides insights into anthropogenic effects on past fluvial floods.


2019 ◽  
Vol 6 (3) ◽  
pp. 181463 ◽  
Author(s):  
R. Cartwright ◽  
A. Venema ◽  
V. Hernandez ◽  
C. Wyels ◽  
J. Cesere ◽  
...  

Alongside changing ocean temperatures and ocean chemistry, anthropogenic climate change is now impacting the fundamental processes that support marine systems. However, where natural climate aberrations mask or amplify the impacts of anthropogenic climate change, identifying key detrimental changes is challenging. In these situations, long-term, systematic field studies allow the consequences of anthropogenically driven climate change to be distinguished from the expected fluctuations in natural resources. In this study, we describe fluctuations in encounter rates for humpback whales, Megaptera novaeangliae , between 2008 and 2018. Encounter rates were assessed during transect surveys of the Au'Au Channel, Maui, Hawaii. Initially, rates increased, tracking projected growth rates for this population segment. Rates reached a peak in 2013, then declined through 2018. Specifically, between 2013 and 2018, mother–calf encounter rates dropped by 76.5%, suggesting a rapid reduction in the reproductive rate of the newly designated Hawaii Distinct Population Segment of humpback whales during this time. As this decline coincided with changes in the Pacific decadal oscillation, the development of the NE Pacific marine heat wave and the evolution of the 2016 El Niño, this may be another example of the impact of this potent trifecta of climatic events within the North Pacific.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hanna Leona Lokys ◽  
Jürgen Junk ◽  
Andreas Krein

Projected climate change will cause increasing air temperatures affecting human thermal comfort. In the highly populated areas of Western-Central Europe a large population will be exposed to these changes. In particular Luxembourg—with its dense population and the large cross-border commuter flows—is vulnerable to changing thermal stress. Based on climate change projections we assessed the impact of climate change on human thermal comfort over the next century using two common human-biometeorological indices, the Physiological Equivalent Temperature and the Universal Thermal Climate Index. To account for uncertainties, we used a multimodel ensemble of 12 transient simulations (1971–2098) with a spatial resolution of 25 km. In addition, the regional differences were analysed by a single regional climate model run with a spatial resolution of 1.3 km. For the future, trends in air temperature, vapour pressure, and both human-biometeorological indices could be determined. Cold stress levels will decrease significantly in the near future up to 2050, while the increase in heat stress turns statistically significant in the far future up to 2100. This results in a temporarily reduced overall thermal stress level but further increasing air temperatures will shift the thermal comfort towards heat stress.


Author(s):  
Sarah E Perkins-Kirkpatrick ◽  
Daithi Stone ◽  
Dann M. Mitchell ◽  
Suzanne M. Rosier ◽  
Andrew David King ◽  
...  

Abstract Investigations into the role of anthropogenic climate change in extreme weather events are now starting to extend into analysis of anthropogenic impacts on non-climate (e.g. socio-economic) systems. However, care needs to be taken when making this extension, because methodological choices regarding extreme weather attribution can become crucial when considering the events’ impacts. The fraction of attributable risk (FAR) method, useful in extreme weather attribution research, has a very specific interpretation concerning a class of events, and there is potential to misinterpret results from weather event analyses as being applicable to specific events and their impact outcomes. Using two case studies of meteorological extremes and their impacts, we argue that FAR is not generally appropriate when estimating the magnitude of the anthropogenic signal behind a specific impact. Attribution assessments on impacts should always be carried out in addition to assessment of the associated meteorological event, since it cannot be assumed that the anthropogenic signal behind the weather is equivalent to the signal behind the impact because of lags and nonlinearities in the processes through which the impact system reacts to weather. Whilst there are situations where employing FAR to understand the climate change signal behind a class of impacts is useful (e.g. “system breaking” events), more useful results will generally be produced if attribution questions on specific impacts are reframed to focus on changes in the impact return value and magnitude across large samples of factual and counterfactual climate model and impact simulations. We advocate for constant interdisciplinary collaboration as essential for effective and robust impact attribution assessments.


2021 ◽  
Author(s):  
Kenta Sayama ◽  
Ash Parton ◽  
Heather Viles

&lt;p&gt;Quaternary palaeoenvironmental archives are essential for our understanding of past climate changes and humanity&amp;#8217;s response to them. In the age of anthropogenic climate change, these sites are not only important scientifically, but also educationally to teach people about the impact of climate change, and the role it played in shaping past communities.&amp;#160;&lt;/p&gt;&lt;p&gt;The landscape of the Arabian Peninsula is highly reactive to even subtle changes in climate and recent research has shown that palaeoenvironmental archives in south-east Arabia (i.e., dunes, fluvial/alluvial and palaeolake deposits, etc.) are crucial for our understanding of the role of climate change in the late-Pleistocene dispersal of early human populations out of Africa. The importance of archaeological sites in this region is increasingly recognised, with many sites benefitting from extensive research and conservation. Similarly, the rich geological history of the region has either been catalogued or protected with integration into national tourism strategies. Despite the the budding initiative of geoheritage conservation in Arabia, however, the protection of Quaternary palaeoenvironmental sites has been entirely disregarded.&lt;/p&gt;&lt;p&gt;With the lack of a protection framework and the continuous economic development of the region, many of these archives are under imminent threat or already destroyed. At present, no assessment has been conducted to examine the possible extent of such loss. Here we propose that a system must be established for scientists to record and highlight the potential threat of destruction of these irreplaceable archives. &amp;#160;Also, to protect these sites effectively, we must develop a conservation strategy with an understanding of the factors that differentiate them from geoheritage sites that already enjoy protection.&lt;/p&gt;&lt;p&gt;For the first time, this study has compiled a database of Quaternary palaeoenvironmental archives in south-east Arabia. A total of ~300 sites in the entire region have been assessed for their risk status, with ~100 sites in the UAE assessed additionally for their scientific and educational values. Preliminary results indicate that more than 10% of sites, mostly in urban or coastal settings, have been destroyed or are under imminent threat.&amp;#160; Furthermore, the prevailing prioritisation of conventional aesthetic values in geoheritage conservation has been identified as a major obstacle in promoting the conservation of these sites.&amp;#160;&lt;/p&gt;


2015 ◽  
Vol 28 (5) ◽  
pp. 1806-1823 ◽  
Author(s):  
Angela J. Colbert ◽  
Brian J. Soden ◽  
Ben P. Kirtman

Abstract The impact of natural and anthropogenic climate change on tropical cyclone (TC) tracks in the western North Pacific (WNP) is examined using a beta and advection model (BAM) to isolate the influence of changes in the large-scale steering flow from changes in genesis location. The BAM captures many of the observed changes in TC tracks due to El Niño–Southern Oscillation (ENSO), while little change is noted for the Pacific decadal oscillation and all-India monsoon rainfall in either observations or BAM simulations. Analysis with the BAM suggests that the observed shifts in the average track between the phases of ENSO are primarily due to changes in the large-scale steering flow, with changes in genesis location playing a secondary role. Potential changes in TC tracks over the WNP due to anthropogenic climate change are also assessed. Ensemble mean projections are downscaled from 17 CMIP3 models and 26 CMIP5 models. Statistically significant decreases [~(4%–6%)] in westward moving TCs and increases [~(5%–7%)] in recurving ocean TCs are found. These correspond to projected decreases of 3–5 TCs per decade over the Philippines and increases of 1–3 TCs per decade over the central WNP. The projected changes are primarily caused by a reduction in the easterlies. This slows the storm movement, allowing more time for the beta drift to carry the storm northward and recurve. A previous study found similar results in the North Atlantic. Taken together, these results suggest that a weakening of the mean atmospheric circulation in response to anthropogenic warming will lead to fewer landfalling storms over the North Atlantic and WNP.


2008 ◽  
Vol 9 (6) ◽  
pp. 1377-1389 ◽  
Author(s):  
Thomas A. McMahon ◽  
Anthony S. Kiem ◽  
Murray C. Peel ◽  
Phillip W. Jordan ◽  
Geoffrey G. S. Pegram

Abstract This paper introduces a new approach to stochastically generating rainfall sequences that can take into account natural climate phenomena, such as the El Niño–Southern Oscillation and the interdecadal Pacific oscillation. The approach is also amenable to modeling projected affects of anthropogenic climate change. The method uses a relatively new technique, empirical mode decomposition (EMD), to decompose a historical rainfall series into several independent time series that have different average periods and amplitudes. These time series are then recombined to form an intradecadal time series and an interdecadal time series. After separate stochastic generation of these two series, because they are independent, they can be recombined by summation to form a replicate equivalent to the historical data. The approach was applied to generate 6-monthly rainfall totals for six rainfall stations located near Canberra, Australia. The cross correlations were preserved by carrying out the stochastic analysis using the Matalas multisite model. The results were compared with those obtained using a traditional autoregressive lag-one [AR(1)], and it was found that the new EMD stochastic model performed satisfactorily. The new approach is able to realistically reproduce multiyear–multidecadal dry and wet epochs that are characteristic of Australia’s climate and are not satisfactorily modeled using traditional stochastic rainfall generation methods. The method has two advantages over the traditional AR(1) approach, namely, that it can simulate nonstationarity characteristics in the historical time series, and it is easy to alter the decomposed time series components to examine the impact of anthropogenic climate change.


2021 ◽  
Author(s):  
◽  
Anna L. Carter

<p>Successful conservation of terrestrial biodiversity requires understanding and predicting the impacts of rapid climate warming on the suitability of both current and potential future habitats. Most predictions of range shifts and other population-scale effects of climate change rely to some extent on statistical links between a species' known geographical distribution and the suite of environmental conditions experienced within that space. However, species' responses to climate change are likely to be more complex than can be represented by the projection of current species-environment relationships into unknown environments. An important goal in biodiversity conservation is the development of quantitative tools with which to assess habitat suitability independently of distributions.  In populations of oviparous species, climate change and habitat modification may have distinct effects on different life stages. Temperatures that are well within the thermal tolerance range of adults, for example, may affect embryonic development rates, hatching phenology, or offspring survival and phenotype. I examined how environmental variation may affect the thermal suitability of habitat for facilitating embryonic development and maintaining balanced sex ratios in tuatara (Sphenodon punctatus), an endemic New Zealand reptile with temperature-dependent sex determination (TSD). Once widespread throughout New Zealand, populations are now restricted to offshore islands and fenced mainland sanctuaries, though establishment of additional populations via translocation is ongoing. Due to intensive conservation efforts, tuatara are not classified as an endangered species, but, like other species in which hatchling sex is determined by the incubation environment, populations are potentially at risk from the detrimental effects of sex-ratio bias.  I conducted two seasons of field work on the island of Takapourewa to quantify the relationship between rapid vegetation succession and selection of nesting areas. I then used a variety of predictive models to link data on nesting behaviour collected in the field with the microclimate conditions experienced by nesting female tuatara and developing embryos. Using mechanistically modelled soil temperature data, I generated predictions of incubation temperatures, offspring sex ratios, and hatching dates for two populations of tuatara on environmentally distinct islands, Takapourewa and Hauturu, under current and projected future climate scenarios. Finally, I classified the thermal suitability of sites on Hauturu for facilitating successful embryonic development and created geospatial surfaces defining suitable nesting locations adjacent to tuatara habitats.  Offspring sex ratios on both islands are unlikely to become male-biased if the magnitude of climate warming observed over the next century more closely matches the minimum, rather than the maximum, projected warming scenario. On Takapourewa, the timing of nesting will be critical in determining whether sex ratios become male-biased under a scenario of maximum climate warming. Earlier nesting may also lead to shifts in hatching phenology under either scenario of climate warming. Warmer annual temperatures on Hauturu are more likely to lead to heavily male-biased offspring sex ratios under the maximum warming scenario. Female tuatara on Hauturu do not need to travel away from their current habitats to locate suitable nesting sites. Monitoring the population to quantify nesting behaviour on the island will be important for determining whether females' choices of incubation microclimates can compensate for the sex ratio-biasing effects of climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document