scholarly journals Investigating the Specific Interactions Between Microtubule Stabilising Agents and β-Tubulin

2021 ◽  
Author(s):  
◽  
Benjamin Jones

<p>Microtubule stabilising agents are a class of cytotoxic compounds that cause mitotic arrest through inhibition of microtubule function. They specifically target β-tubulin subunits promoting tubulin polymerisation, which eventually leads to cell death. Members of this drug class include the cancer chemotherapeutics paclitaxel and ixabepilone. However, like many cytotoxic agents, tumour cells often develop multi-drug resistance phenotypes limiting the effectiveness of such compounds. This results from the expulsion of these drugs from cells by efflux pumps, as well as mutation of their binding site. Much effort has been focused on improving the utility of this important drug class in the ongoing fight against cancer.  The microtubule stabilising agents peloruside A and laulimalide originate from marine sponge species native to the South Pacific. They have similar pharmacological profiles to paclitaxel and ixabepilone, however with several unique properties. They are poor substrates for efflux pumps and target a different region on β-tubulin subunits, giving them the potential for treatment of resistant tumours. This represents a novel mechanism of action that may be exploited for drug development, and further characterisation of the binding site is warranted.  The aim of this study is to investigate the contribution of two amino acids of human βItubulin to the interactions with peloruside A and laulimalide. Specifically, glu127 and lys124 have been predicted by computational modelling and analogue studies to form hydrogen bonds and other associations with the two compounds. These amino acids are located on β-tubulin subunits adjacent to the main binding pocket of peloruside A and laulimalide, and represent a potential inter-protofilament interaction that does not occur with other microtubule stabilising agents. This binding mechanism has not yet been shown by crystallography and is hence based solely on in silico work, requiring biological validation.  HEK293 cells were transfected with βI-tubulin with these amino acids mutated to alanines to prevent hydrogen bond formation. Cell proliferation assays, flow cytometry, and immunoblotting were used to study the effect loss of the inter-protofilament interaction has on the bioactivity of peloruside A and laulimalide. These mutations did not significantly alter the concentration-response of cells to either drug in the cell proliferation assay. However, accumulation of cells in the G2/M phase of the cell cycle and the proportion of transfected cells showing signs of mitotic arrest significantly decreased for E127A mutant cells compared to wild type βI-tubulin transfected control cells treated with peloruside A. Furthermore, a similar reduction in cell cycle block was also seen in E127A mutant cells treated with the negative control ixabepilone, which binds to a different site on β-tubulin.  No evidence seen in this study suggests that either amino acid plays a major role in peloruside A or laulimalide target binding. However, the amino acid E127 is important for inter-protofilament associations independent of drug treatment, as its mutation appeared to reduce global stability of microtubule structures. This information requires further validation, it may be useful in the design of future analogue syntheses as development of these promising drug candidates continues.</p>

2021 ◽  
Author(s):  
◽  
Benjamin Jones

<p>Microtubule stabilising agents are a class of cytotoxic compounds that cause mitotic arrest through inhibition of microtubule function. They specifically target β-tubulin subunits promoting tubulin polymerisation, which eventually leads to cell death. Members of this drug class include the cancer chemotherapeutics paclitaxel and ixabepilone. However, like many cytotoxic agents, tumour cells often develop multi-drug resistance phenotypes limiting the effectiveness of such compounds. This results from the expulsion of these drugs from cells by efflux pumps, as well as mutation of their binding site. Much effort has been focused on improving the utility of this important drug class in the ongoing fight against cancer.  The microtubule stabilising agents peloruside A and laulimalide originate from marine sponge species native to the South Pacific. They have similar pharmacological profiles to paclitaxel and ixabepilone, however with several unique properties. They are poor substrates for efflux pumps and target a different region on β-tubulin subunits, giving them the potential for treatment of resistant tumours. This represents a novel mechanism of action that may be exploited for drug development, and further characterisation of the binding site is warranted.  The aim of this study is to investigate the contribution of two amino acids of human βItubulin to the interactions with peloruside A and laulimalide. Specifically, glu127 and lys124 have been predicted by computational modelling and analogue studies to form hydrogen bonds and other associations with the two compounds. These amino acids are located on β-tubulin subunits adjacent to the main binding pocket of peloruside A and laulimalide, and represent a potential inter-protofilament interaction that does not occur with other microtubule stabilising agents. This binding mechanism has not yet been shown by crystallography and is hence based solely on in silico work, requiring biological validation.  HEK293 cells were transfected with βI-tubulin with these amino acids mutated to alanines to prevent hydrogen bond formation. Cell proliferation assays, flow cytometry, and immunoblotting were used to study the effect loss of the inter-protofilament interaction has on the bioactivity of peloruside A and laulimalide. These mutations did not significantly alter the concentration-response of cells to either drug in the cell proliferation assay. However, accumulation of cells in the G2/M phase of the cell cycle and the proportion of transfected cells showing signs of mitotic arrest significantly decreased for E127A mutant cells compared to wild type βI-tubulin transfected control cells treated with peloruside A. Furthermore, a similar reduction in cell cycle block was also seen in E127A mutant cells treated with the negative control ixabepilone, which binds to a different site on β-tubulin.  No evidence seen in this study suggests that either amino acid plays a major role in peloruside A or laulimalide target binding. However, the amino acid E127 is important for inter-protofilament associations independent of drug treatment, as its mutation appeared to reduce global stability of microtubule structures. This information requires further validation, it may be useful in the design of future analogue syntheses as development of these promising drug candidates continues.</p>


2021 ◽  
Author(s):  
◽  
Reem Hanna

<p>Peloruside A, a natural product isolated from the marine sponge Mycale hentscheli, is a microtubule-stabilising agent that has a similar mechanism of action to the anticancer drug paclitaxel and is cytotoxic to cultured mammalian cells. Peloruside appears to bind to a distinct site on mammalian tubulin that is different from that of the taxoid-site drugs. Because of the high sequence homology between yeast and mammalian tubulin, Saccharomyces cerevisiae (S. cerevisiae) was used as a model organism to characterise the peloruside-binding site with the aim of advancing our understanding about this site on mammalian tubulin. Wild type S. cerevisiae (BY4741) was sensitive to peloruside at uM concentrations; however, a strain that lacks the mad2 (Mitotic Arrest Deficient 2) gene showed increased sensitivity to the drug at much lower uM concentrations. This gene is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. The main aims of this project were to define the binding site of peloruside A using yeast tubulin to see if microtubule function and/or morphology is altered in yeast by peloruside, and to identify any secondary drug targets "friends of the target" through chemical genetic interactions profiling (Homozygous deletion profiling microarray). Site-directed mutagenesis was used to mutate two conserved amino acids (A296T; R306H) known to confer resistance to peloruside in mammalian cells. Based on a published computer model of the peloruside binding site on mammalian tubulin, we also mutated three other amino acids, two that were predicted to affect peloruside binding (Q291M and N337L), and one that was predicted to affect laulimalide binding but have little affect on peloruside binding (V333W). We also included a negative control that was predicted to have no effect on peloruside binding (R282Q) and would affect epothilone binding. We found that of the six point mutations, only Q291M failed to confer resistance in yeast and instead it increased the inhibition to the drug. Using a bud index assay, confocal microscopy, and flow cytometry, 40-50 uM peloruside was shown to block cells in G2/M of the cell cycle, confirming a direct action of the drug on microtubule function. Homozygous profiling (HOP) microarray analysis of a deletion mutant set of yeast genes was also carried out to identify gene products that interact with peloruside in order to link the drug to specific networks or biochemical pathways in the cells. From site-directed mutagenesis, we concluded that peloruside binds to yeast B-tubulin in the region predicted by the published model of the binding site, and therefore mapping the site on yeast tubulin could provide useful information about the mammalian binding site for peloruside. The bud index, flow cytometry, and confocal microscopy experiments provided further evidence that peloruside interacts with yeast tubulin. From HOP we found that peloruside has roles in the cell cycle, as expected, and has effects on protein transport, secretion, cell wall synthesis, and steroid biosynthesis pathways.</p>


2021 ◽  
Author(s):  
◽  
Reem Hanna

<p>Peloruside A, a natural product isolated from the marine sponge Mycale hentscheli, is a microtubule-stabilising agent that has a similar mechanism of action to the anticancer drug paclitaxel and is cytotoxic to cultured mammalian cells. Peloruside appears to bind to a distinct site on mammalian tubulin that is different from that of the taxoid-site drugs. Because of the high sequence homology between yeast and mammalian tubulin, Saccharomyces cerevisiae (S. cerevisiae) was used as a model organism to characterise the peloruside-binding site with the aim of advancing our understanding about this site on mammalian tubulin. Wild type S. cerevisiae (BY4741) was sensitive to peloruside at uM concentrations; however, a strain that lacks the mad2 (Mitotic Arrest Deficient 2) gene showed increased sensitivity to the drug at much lower uM concentrations. This gene is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. The main aims of this project were to define the binding site of peloruside A using yeast tubulin to see if microtubule function and/or morphology is altered in yeast by peloruside, and to identify any secondary drug targets "friends of the target" through chemical genetic interactions profiling (Homozygous deletion profiling microarray). Site-directed mutagenesis was used to mutate two conserved amino acids (A296T; R306H) known to confer resistance to peloruside in mammalian cells. Based on a published computer model of the peloruside binding site on mammalian tubulin, we also mutated three other amino acids, two that were predicted to affect peloruside binding (Q291M and N337L), and one that was predicted to affect laulimalide binding but have little affect on peloruside binding (V333W). We also included a negative control that was predicted to have no effect on peloruside binding (R282Q) and would affect epothilone binding. We found that of the six point mutations, only Q291M failed to confer resistance in yeast and instead it increased the inhibition to the drug. Using a bud index assay, confocal microscopy, and flow cytometry, 40-50 uM peloruside was shown to block cells in G2/M of the cell cycle, confirming a direct action of the drug on microtubule function. Homozygous profiling (HOP) microarray analysis of a deletion mutant set of yeast genes was also carried out to identify gene products that interact with peloruside in order to link the drug to specific networks or biochemical pathways in the cells. From site-directed mutagenesis, we concluded that peloruside binds to yeast B-tubulin in the region predicted by the published model of the binding site, and therefore mapping the site on yeast tubulin could provide useful information about the mammalian binding site for peloruside. The bud index, flow cytometry, and confocal microscopy experiments provided further evidence that peloruside interacts with yeast tubulin. From HOP we found that peloruside has roles in the cell cycle, as expected, and has effects on protein transport, secretion, cell wall synthesis, and steroid biosynthesis pathways.</p>


2010 ◽  
Vol 298 (6) ◽  
pp. R1615-R1626 ◽  
Author(s):  
Neil I. Bower ◽  
Ian A. Johnston

The mRNA expression of myogenic regulatory factors, including myoD1 (myoblast determination factor) gene paralogs, and their regulation by amino acids and insulin-like growth factors were investigated in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon ( Salmo salar). The cell cycle and S phase were determined as 28.1 and 13.3 h, respectively, at 18°C. Expression of myoD1b and myoD1c peaked at 8 days of culture in the initial proliferation phase and then declined more than sixfold as cells differentiated and was correlated with PCNA (proliferating cell nuclear antigen) expression ( R = 0.88, P < 0.0001; R = 0.70, P < 0.0001). In contrast, myoD1a transcripts increased from 2 to 8 days and remained at elevated levels as myotubes were formed. mRNA levels of myoD1c were, on average, 3.1- and 5.7-fold higher than myoD1a and myoD1b, respectively. Depriving cells of amino acids and serum led to a rapid increase in pax7 and a decrease in myoD1c and PCNA expression, indicating a transition to a quiescent state. In contrast, amino acid replacement in starved cells produced significant increases in myoD1c (at 6 h), PCNA (at 12 h), and myoD1b (at 24 h) and decreases in pax7 expression as cells entered the cell cycle. Our results are consistent with temporally distinct patterns of myoD1c and myoD1b expression at the G1 and S/G2 phases of the cell cycle. Treatment of starved cells with insulin-like growth factor I or II did not alter expression of the myoD paralogs. It was concluded that, in vitro, amino acids alone are sufficient to stimulate expression of genes regulating myogenesis in myoblasts involving autocrine/paracrine pathways. The differential responses of myoD paralogs during myotube maturation and amino acid treatments suggest that myoD1b and myoD1c are primarily expressed in proliferating cells and myoD1a in differentiating cells, providing evidence for their subfunctionalization following whole genome and local duplications in the Atlantic salmon lineage.


Cell Cycle ◽  
2011 ◽  
Vol 10 (19) ◽  
pp. 3387-3396 ◽  
Author(s):  
Adrian Begaye ◽  
Shana Trostel ◽  
Zhiming Zhao ◽  
Richard E. Taylor ◽  
David C. Schriemer ◽  
...  

Author(s):  
Rajesh Khanduji Jadhav

The  DPJ  (Deproteinised  Juice)  or  whey  constituents    were  responsible  for  the  induction  of  growth  optimization  of  plants,  various  fungi  including  yeast,  Rhizobium  reported  by  earlier  workers. In  previous  experiments,  DPJ  maximised  the  growth  of  plants  and  seed  germination. During  present  investigation  the  carbohydrates,  amino  acids  and  protein   tests  were  taken  into  the  consideration. All the tests found positive.  Despite,  the  extract is  deproteinised,  still  there  was  persistence  of  few  proteins  and  amino  acids. The  collection  of  mycelia  grown  on  DPJ  was  filtered  and    the  culture  filtrates    recommended  to   use  in vitro  for  the  industrial  purpose  for   biomass  and  secondary  metabolites.   Experimental  DPJ  is  compared  with  the  glucose  nitrate  medium  as  control.  These  positive  tests  revealed  the suitability  of  DPJ  to  be  used  as  the  medium  for  the  growth  of  fungi.  Positive  amino  acid  tests  conspicuously  revealed  presence  of  phytohormones  in  members  of   Brassicaceae  DPJ  and  hence  advisable  to  be  utilised  for  the   plant  growth  in  vivo,  plant  callus  growth   and  cell  proliferation  of  mycelia  in  vitro. 


2019 ◽  
Author(s):  
C.B. Borg ◽  
N. Braun ◽  
S.A. Heusser ◽  
Y. Bay ◽  
D. Weis ◽  
...  

AbstractAcid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is upregulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs and non-canonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is mediated through electrostatic interactions of basic amino acids in the BigDyn N-terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the non-canonical amino acid azido-phenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.Significance StatementNeuropeptides such as big dynorphin (BigDyn) play important roles in the slow modulation of fast neurotransmission, which is mediated by membrane-embedded receptors. In fact, BigDyn is the most potent known endogenous modulator of one such receptor, the acid-sensing ion channel (ASIC), but the mode of action remains unknown. In this work, we employ a broad array of technologies to unravel the details of where big dynorphin binds to ASIC and how it modulates its activity. As both BigDyn and ASIC are implicated in pain pathways, this work might pave the way towards future analgesics.


2019 ◽  
Vol 151 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Elias Ndaru ◽  
Rachel-Ann A. Garibsingh ◽  
YueYue Shi ◽  
Evan Wallace ◽  
Paul Zakrepine ◽  
...  

The neutral amino acid transporter alanine serine cysteine transporter 2 (ASCT2) belongs to the solute carrier 1 (SLC1) family of transport proteins and transports neutral amino acids, such as alanine and glutamine, into the cell in exchange with intracellular amino acids. This amino acid transport is sodium dependent, but not driven by the transmembrane Na+ concentration gradient. Glutamine transport by ASCT2 is proposed to be important for glutamine homoeostasis in rapidly growing cancer cells to fulfill the energy and nitrogen demands of these cells. Thus, ASCT2 is thought to be a potential anticancer drug target. However, the pharmacology of the amino acid binding site is not well established. Here, we report on the synthesis and characterization of a novel class of ASCT2 inhibitors based on an amino acid scaffold with a sulfonamide/sulfonic acid ester linker to a hydrophobic group. The compounds were designed based on an improved ASCT2 homology model using the human glutamate transporter hEAAT1 crystal structure as a modeling template. The compounds were shown to inhibit with a competitive mechanism and a potency that scales with the hydrophobicity of the side chain. The most potent compound binds with an apparent affinity, Ki, of 8 ± 4 µM and can block the alanine response with a Ki of 40 ± 23 µM at 200 µM alanine concentration. Computational analysis predicts inhibitor interactions with the binding site through molecular docking. In conclusion, the sulfonamide/sulfonic acid ester scaffold provides facile synthetic access to ASCT2 inhibitors with a potentially large variability in chemical space of the hydrophobic side chain. These inhibitors will be useful chemical tools to further characterize the role of ASCT2 in disease as well as improve our understanding of inhibition mechanisms of this transporter.


2015 ◽  
Vol 35 (3) ◽  
Author(s):  
Nadezda Bryan ◽  
Kevin P. Raisch

The first ten amino acids of hexokinase II are import for binding to the MOM. Mutating the fifth amino acid abolished mitochondrial binding. Determining the binding site is important for identifying novel compounds that can disrupt HKII binding to VDAC.


1981 ◽  
Vol 51 (1) ◽  
pp. 219-228
Author(s):  
K.I. Mills ◽  
L.G. Bell

The incorporation of tritiated thymidine, uridine and leucine, into the acid-precipitable material of DNA. RNA and proteins, respectively, was studied by autoradiography throughout the cell cycle of Amoeba proteus. DNA synthesis occupied the first 17 h of the cycle (57 h long) and 2 peaks between 0.5 and 9.13 h accounted for the majority of the thymidine incorporation. RNA synthesis was represented by a series of peak uridine grain counts, the 3 major peaks occurring at 10, 26–27 and 47–48 h. The incorporation of leucine also followed a pattern of peaks and dips, the main peaks occurring 1–2 h after the major increases in uridine incorporation. The fraction of label present over the nucleus decreased during the cell cycle, and this was probably due to a lowered incorporation of the leucine label by proteins synthesized in the cytoplasm and destined to become nuclear proteins. The incorporation patterns of 6 amino acids (arginine, aspartic acid, leucine, lysine, serine and valine) were studied individually during 3 periods of the cell cycle: 0-10 h (S phase); 20–30 h (early G2); and 40–50 h (mid-late G2). Variations in the intensity and timings of the incorporation maxima of the amino acids were observed, although the timings of increased grain counts of some of the amino acids frequently coincided. “Unique” incorporation peaks (i.e. only observed in one of the amino acids studied) possibly indicate the synthesis of phase-specific proteins. The amino acid and nucleoside incorporation profiles presented in this paper will enable the results obtained from future studies on amoebae to be related to the macromolecular synthesis patterns.


Sign in / Sign up

Export Citation Format

Share Document