scholarly journals Bioacoustic monitoring of New Zealand avifauna before and after aerial 1080 operations

2021 ◽  
Author(s):  
◽  
Roald Egbert Harro Bomans

<p>Introduced mammalian predators, namely possums, stoats and rats, are the leading cause of decline in native avifauna in New Zealand. The control of these species is essential to the persistence of native birds. A major component of mammal control in New Zealand is carried out through the aerial distribution of the toxin sodium monofluoroacetate (otherwise known as 1080). The use of this toxin, however, is subject to significant public debate. Many opponents of its use claim that forests will ‘fall silent’ following aerial operations, and that this is evidence of negative impacts on native bird communities. With the continued and likely increased use of this poison, monitoring the outcomes of such pest control operations is necessary to both address these concerns and inform conservation practice. The recent growth in autonomous recording units (ARUs) provides novel opportunities to conduct monitoring using bioacoustics. This thesis used bioacoustic techniques to monitor native bird species over three independent aerial 1080 operations in the Aorangi and Rimutaka Ranges of New Zealand.  In Chapter 2, diurnal bird species were monitored for 10-12 weeks over two independent operations in treatment and non-treatment areas. At the community level, relative to non-treatment areas, the amount of birdsong recorded did not decrease significantly in treatment areas across either of the operations monitored. At the species level, one species, the introduced chaffinch (Fringilla coelebs), showed a significant decline in the prevalence of its calls in the treatment areas relative to non-treatment areas. This was observed over one of the two operations monitored. Collectively, these results suggest that diurnal native avifaunal communities do not ‘fall silent’ following aerial 1080 operations.  The quantity of data produced by ARUs can demand labour-intensive manual analysis. Extracting data from recordings using automated detectors is a potential solution to this issue. The creation of such detectors, however, can be subjective, iterative, and time-consuming. In Chapter 3, a process for developing a parsimonious, template-based detector in an efficient, objective manner was developed. Applied to the creation of a detector for morepork (Ninox novaeseelandiae) calls, the method was highly successful as a directed means to achieve parsimony. An initial pool of 187 potential templates was reduced to 42 candidate templates. These were further refined to a 10-template detector capable of making 98.89% of the detections possible with all 42 templates in approximately a quarter of the processing time for the dataset tested. The detector developed had a high precision (0.939) and moderate sensitivity (0.399) with novel recordings, developed for the minimisation of false-positive errors in unsupervised monitoring of broad-scale population trends.  In Chapter 4, this detector was applied to the short-term 10-12 week monitoring of morepork in treatment and non-treatment areas around three independent aerial 1080 operations; and to longer-term four year monitoring in two study areas, one receiving no 1080 treatment, and one receiving two 1080 treatments throughout monitoring. Morepork showed no significant difference in trends of calling prevalence across the three independent operations monitored. Longer-term, a significant quadratic effect of time since 1080 treatment was found, with calling prevalences predicted to increase for 3.5 years following treatment. Collectively, these results suggest a positive effect of aerial 1080 treatment on morepork populations in the lower North Island, and build on the small amount of existing literature regarding the short- and long-term response of this species to aerial 1080 operations.</p>

2021 ◽  
Author(s):  
◽  
Roald Egbert Harro Bomans

<p>Introduced mammalian predators, namely possums, stoats and rats, are the leading cause of decline in native avifauna in New Zealand. The control of these species is essential to the persistence of native birds. A major component of mammal control in New Zealand is carried out through the aerial distribution of the toxin sodium monofluoroacetate (otherwise known as 1080). The use of this toxin, however, is subject to significant public debate. Many opponents of its use claim that forests will ‘fall silent’ following aerial operations, and that this is evidence of negative impacts on native bird communities. With the continued and likely increased use of this poison, monitoring the outcomes of such pest control operations is necessary to both address these concerns and inform conservation practice. The recent growth in autonomous recording units (ARUs) provides novel opportunities to conduct monitoring using bioacoustics. This thesis used bioacoustic techniques to monitor native bird species over three independent aerial 1080 operations in the Aorangi and Rimutaka Ranges of New Zealand.  In Chapter 2, diurnal bird species were monitored for 10-12 weeks over two independent operations in treatment and non-treatment areas. At the community level, relative to non-treatment areas, the amount of birdsong recorded did not decrease significantly in treatment areas across either of the operations monitored. At the species level, one species, the introduced chaffinch (Fringilla coelebs), showed a significant decline in the prevalence of its calls in the treatment areas relative to non-treatment areas. This was observed over one of the two operations monitored. Collectively, these results suggest that diurnal native avifaunal communities do not ‘fall silent’ following aerial 1080 operations.  The quantity of data produced by ARUs can demand labour-intensive manual analysis. Extracting data from recordings using automated detectors is a potential solution to this issue. The creation of such detectors, however, can be subjective, iterative, and time-consuming. In Chapter 3, a process for developing a parsimonious, template-based detector in an efficient, objective manner was developed. Applied to the creation of a detector for morepork (Ninox novaeseelandiae) calls, the method was highly successful as a directed means to achieve parsimony. An initial pool of 187 potential templates was reduced to 42 candidate templates. These were further refined to a 10-template detector capable of making 98.89% of the detections possible with all 42 templates in approximately a quarter of the processing time for the dataset tested. The detector developed had a high precision (0.939) and moderate sensitivity (0.399) with novel recordings, developed for the minimisation of false-positive errors in unsupervised monitoring of broad-scale population trends.  In Chapter 4, this detector was applied to the short-term 10-12 week monitoring of morepork in treatment and non-treatment areas around three independent aerial 1080 operations; and to longer-term four year monitoring in two study areas, one receiving no 1080 treatment, and one receiving two 1080 treatments throughout monitoring. Morepork showed no significant difference in trends of calling prevalence across the three independent operations monitored. Longer-term, a significant quadratic effect of time since 1080 treatment was found, with calling prevalences predicted to increase for 3.5 years following treatment. Collectively, these results suggest a positive effect of aerial 1080 treatment on morepork populations in the lower North Island, and build on the small amount of existing literature regarding the short- and long-term response of this species to aerial 1080 operations.</p>


Urban Science ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Cristian Silva

Urban sprawl has been discussed extensively with regard to its negative impacts. On this basis, regulations have been put in place to control sprawling suburbanization, including the establishment of restricted areas for expansion defined by administrative urban boundaries. Overall, these measures have not been at all successful, considering that city-regions continue to expand inorganically, often reinforcing urban sprawl patterns. As clear evidence of the weaknesses of planning regimes of control, these unsuccessful attempts are partly explained by a series of policy ambiguities that contradict the meaning of planning as a prescriptive discipline. This ambiguity is justified by the need to frame flexible regulations that allow adaptation to unforeseen events over time. In this paper, using the case of Auckland, New Zealand, it is demonstrated that instead of planning flexibility, there is planning “ambiguity” accompanied by weak opposition from rural regimes, which deliberately contributes to urban sprawl. This is relevant considering that the inorganic encroachment of rural lands diminishes the huge environmental potential of the peri-urban space of Auckland, its ecosystem services, and agricultural activities—all elements that encourage the creation of more environmentally sustainable peripheral landscapes as a counterpoint to traditional sprawling suburbanization.


2017 ◽  
Vol 3 (1) ◽  
pp. 85-90 ◽  
Author(s):  
John E. C. Flux

AbstractTo study the effects domestic cats may have on surrounding wildlife, a complete list was made of 558 items caught in the garden or brought into the house by one cat over 17 years, from 1988 to 2005. The effect on prey populations was assessed by comparing their abundance with the previous 15 years’ population without a cat. On balance, this cat (Cat 1) was clearly beneficial to the native bird species by killing rodents and deterring mustelids. The diet of a second cat (Cat 2) was recorded in the same way from 2006 to 2016. This cat caught half the number of items 148:287, but in the same proportions: house mice (37.8:42.6); ship rats (12.8:12.1); European rabbits (all young) (8.1:6.7); weasels (0.7:0.4); dunnock (12.8:9.2); house sparrow (2.0:3.1); blackbird (2.7:2.5); song thrush (1.4:1.3); European greenfinch (0.7:5.8); chaffinch (0.7:3.3); silvereye (10.1:8.3); New Zealand fantail (2.0:1.0); lizards (8.1:1.7). Despite this, there were significant differences: Cat 2 avoided finches (2:28, P = 0.004), and took a few more lizards (12:5). For both cats, birds apparently formed about a third of their diet: 33.4% and 34.5%, but comparison of the proportion of birds and rodents brought into the house (12:92) and found dead away from the house (49:45) implies that 320 rodent kills may have been missed, being far more difficult to find. As top predators, these cats were clearly beneficial to native birds, and proposed control or elimination may precipitate mesopredator release and a rabbit problem.


2004 ◽  
Vol 31 (6) ◽  
pp. 631 ◽  
Author(s):  
Elaine C. Murphy ◽  
Rachel J. Keedwell ◽  
Kerry P. Brown ◽  
Ian Westbrooke

In New Zealand, five of the six endemic bird species that breed primarily in South Island braided river beds are classed as threatened. A major cause of decline for these species is predation by introduced mammals, and predator-trapping programs are undertaken in the braided rivers of the Mackenzie Basin to protect them. Trapping programs carried out between September 1997 and April 2001 provided the opportunity to investigate predator diet from the gut contents of 375 cats (Felis catus), 371 ferrets (Mustela furo) and 86 stoats (Mustela erminea). As a percentage frequency of occurrence of the main prey items, cat diet consisted of lagomorphs (present in 70% of guts), birds (in 47%), lizards (30%) and invertebrates (36%). Ferret diet consisted of lagomorphs (69%) and birds (28%). Stoat diet consisted of lagomorphs (50%), birds (51%), lizards (21%) and invertebrates (23%). The frequency of occurrence of birds in all three predators was higher in the spring/summer of 1997 – immediately after rabbit haemorrhagic disease (RHD) was introduced – than in any other previous diet study on these braided rivers. This suggests that RHD did lead to increased predation pressure on birds, at least in the short term.


2008 ◽  
Vol 61 ◽  
pp. 390-390
Author(s):  
A.J.M. Hopkins ◽  
M.A. Dick ◽  
I.G. Simpson

In southern New Zealand Neonectria fuckeliana is associated with a stem flute canker of Pinus radiata which can result in severe stem malformation and growth loss This research consisting of three distinct experiments aimed to determine pathogen survival in processed and unprocessed wood and woody debris In the first experiment the survival of the pathogen in living trees was examined by sampling trees infected with N fuckeliana in 6 different years In the second experiment the survival of the pathogen in woody debris was examined using 36 infected logs in a range of sizeclasses The logs were left on the forest floor in shaded and unshaded conditions and sampled for N fuckeliana after 4 and 9 months The third experiment examined the survival of the pathogen in processed wood Boards cut from infected trees were tested in six standard timber drying treatments Boards were sampled before and after drying to determine the presence of living N fuckeliana Neonectria fuckeliana was successfully isolated from trees at all infection times tested The fungus was also successfully isolated from 81 of logs after 9 months on the forest floor There was no significant difference between shaded and unshaded treatments Neonectria fuckeliana was not found in any boards following kilndrying but was successfully isolated from 69 of infected boards subjected to the two standard airdrying treatments for 9 weeks


2021 ◽  
Author(s):  
◽  
Brittany Florence-Bennett

<p>Wildlife management is fraught with challenges due to the complexities of community ecology. Interventions aimed at restoring ecosystems, or managing species, can have unintended negative outcomes for target species. The effect of avian predation on native lizard fauna in New Zealand is not clearly understood, despite birds being regarded as top predators within mammal-free ecosystems. At least thirty-one species of bird have been recorded preying on native lizards, but few studies have directly addressed avian predation on lizards, with the majority of evidence sourced from published anecdotes. New Zealand’s herpetofauna are already vulnerable due to range contractions resulting from mammalian predation and habitat loss, with 87% of New Zealand lizard species considered ‘At Risk’ or ‘Threatened’. Understanding the risks posed to lizards will help to inform successful management of vulnerable populations.  I used lizard-mimicking replicas to identify and assess predation rates exerted by bird species on lizard populations within the Wellington region of New Zealand. I examined the use of lizard replicas as a tool to quantify predation by examining how birds interacted with replicas and comparing attack rates with novel items simultaneously placed in the field. I determined which bird species were preying on replicas, the extent of such predation, and whether site vegetation or daily weather influenced the probability of avian attack on replicas. Although attack frequency did not differ between novel items and lizard replicas, birds exhibited a realistic predatory response by preferentially attacking the head of lizard replicas. Interactions by birds with lizard-mimicking replicas cannot be confirmed as true predation attempts, but lizard replicas can nevertheless be used to quantify predation pressures exerted on lizard populations by opportunistic bird species.   Seven ground-foraging bird species were found to attack lizard replicas. Two species, the pūkeko (Porphyrio melanotus melanotus) and southern black-backed gull (Larus dominicanus dominicanus), were identified as high impact species. The average predation risk experienced by lizard replicas varied greatly across environments, with 0 – 25% of replicas attacked daily at sites. Canopy cover and daily rainfall were not significant predictors, but potentially decreased the likelihood of replica attack. Predation risk varied for lizard replicas as a result of differing assemblages of bird predators at sites, and the presence and foraging behaviour of specific predatory birds.   Predation by birds is likely to be an issue where predation pressure is high, or lizard populations are small, range restricted, or recovering from the presence of mammalian predators. When managing vulnerable lizard populations, managers should take into account the threats posed by avian predators so that lizard communities can recover successfully following the same trajectory as native birds.</p>


2015 ◽  
Vol 61 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Mailee Stanbury ◽  
James V. Briskie

Abstract Although it is well known that birds can assess predation risk through visual and auditory cues, there has been little research into whether similar processes occur with olfactory cues. We examined the role of odor cues in assessing nest predation risk in four species of passerine birds in New Zealand. We compared the ability of two introduced European species (common starling Sturnus vulgaris and song thrush Turdus philomelos) and two native New Zealand species (rifleman Acanthisitta chloris and South Island robin Petroica australis) to respond to the scent of rat urine placed in the nest. Rats are an introduced predator in New Zealand and we expected the native birds, which did not co-evolve with any mammalian predators, to lack behavioral adaptations to the scent of rats at their nest. As expected, both riflemen and robins failed to show any change in their behavior at their nest when rat urine was present compared to a control period in which no scent was present. However, a similar lack of response was observed in the introduced song thrush; only the common starling changed its behavior in the presence of the rat urine. Starlings with rat urine at the nest box were more likely to hesitate before entering and they also approached the nest, but refused to enter more often in the presence of rat scent. Both responses suggest they detected the presence of a predator and changed their behavior to minimize risk to themselves. Although based on a small number of species, our results suggest that responses to predator scent may be less common in New Zealand species, and may be a factor contributing to the vulnerability of native birds to introduced mammalian predators.


2021 ◽  
Vol 3 ◽  
Author(s):  
Matthew Jenkins ◽  
Susan Houge Mackenzie ◽  
Ken Hodge ◽  
Elaine Anne Hargreaves ◽  
Jessica R. Calverley ◽  
...  

The COVID-19 pandemic is a global event that has already had substantive negative impacts on psychological well-being. This study investigated the relationship between physical activity (PA) and psychological well-being during a country-wide COVID-19 lockdown in New Zealand. Motivational quality and PA context (nature-based or non-nature-based) were included as potential mediating and moderating variables within this relationship, respectively. Participants completed an online survey assessing psychological well-being, weekly PA levels, and PA during the second and third weeks of the 7 week COVID-19 lockdown period in New Zealand. Data were analysed using Partial Least Squares Structural Equation Modelling. Results showed that PA significantly predicted psychological well-being, with no significant difference evident in psychological well-being dependent on whether PA was nature or non-nature-based. Nature-based PA was a stronger predictor of intrinsic motivation compared to non-nature-based PA, and intrinsic motivation was positively associated with psychological well-being. In contrast, non-nature-based PA was a stronger predictor of introjected regulation compared to nature-based PA, which was negatively associated with psychological well-being. Overall, these findings suggest that (1) weekly PA was associated with increased psychological well-being during the lockdown, and (2) nature-based PA may foster psychological well-being via effects on motivation. The implications for continued participation in PA will be discussed.


MANASA ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 43-61
Author(s):  
Ratri Atmoko Benedictus ◽  
Divisi Penelitian dan Pengabdian Masyar

Globalization makes it easy for a person to cross borders between countries and opens opportunities for interaction and cooperation between cultures. For students, this opportunity opens opportunities to hone intercultural adaptation competencies that are required to be successful in taking part in the global arena. This study aims to obtain an overview of the competency profile of students in adapting to the cultures of other countries. A multi-method approach applied by a variety of data collection, such as questionnaires, interviews, travel journals, and photo documentation of activities. The five participants in this study were Indonesian students who carrying out kayak expeditions in New Zealand. Quantitative data processing in the form of the Paired Group Difference Test showed that there was no significant difference in cross-cultural adaptation competencies among students before and after their expedition to New Zealand. However, the mean comparison test shows an increase in adaptation competence across cultures with dimensions, especially in the Personal Autonomy Dimension. Meanwhile, qualitative data processing shows a high adherence to religious rituals, efforts to maintain original styles in overcoming problems, conformity with new cultures, considering morals and shyness, stereotypes on the environment, stereotypes on facial expressions, and stereotypes of a nation.


2021 ◽  
Author(s):  
◽  
Brittany Florence-Bennett

<p>Wildlife management is fraught with challenges due to the complexities of community ecology. Interventions aimed at restoring ecosystems, or managing species, can have unintended negative outcomes for target species. The effect of avian predation on native lizard fauna in New Zealand is not clearly understood, despite birds being regarded as top predators within mammal-free ecosystems. At least thirty-one species of bird have been recorded preying on native lizards, but few studies have directly addressed avian predation on lizards, with the majority of evidence sourced from published anecdotes. New Zealand’s herpetofauna are already vulnerable due to range contractions resulting from mammalian predation and habitat loss, with 87% of New Zealand lizard species considered ‘At Risk’ or ‘Threatened’. Understanding the risks posed to lizards will help to inform successful management of vulnerable populations.  I used lizard-mimicking replicas to identify and assess predation rates exerted by bird species on lizard populations within the Wellington region of New Zealand. I examined the use of lizard replicas as a tool to quantify predation by examining how birds interacted with replicas and comparing attack rates with novel items simultaneously placed in the field. I determined which bird species were preying on replicas, the extent of such predation, and whether site vegetation or daily weather influenced the probability of avian attack on replicas. Although attack frequency did not differ between novel items and lizard replicas, birds exhibited a realistic predatory response by preferentially attacking the head of lizard replicas. Interactions by birds with lizard-mimicking replicas cannot be confirmed as true predation attempts, but lizard replicas can nevertheless be used to quantify predation pressures exerted on lizard populations by opportunistic bird species.   Seven ground-foraging bird species were found to attack lizard replicas. Two species, the pūkeko (Porphyrio melanotus melanotus) and southern black-backed gull (Larus dominicanus dominicanus), were identified as high impact species. The average predation risk experienced by lizard replicas varied greatly across environments, with 0 – 25% of replicas attacked daily at sites. Canopy cover and daily rainfall were not significant predictors, but potentially decreased the likelihood of replica attack. Predation risk varied for lizard replicas as a result of differing assemblages of bird predators at sites, and the presence and foraging behaviour of specific predatory birds.   Predation by birds is likely to be an issue where predation pressure is high, or lizard populations are small, range restricted, or recovering from the presence of mammalian predators. When managing vulnerable lizard populations, managers should take into account the threats posed by avian predators so that lizard communities can recover successfully following the same trajectory as native birds.</p>


Sign in / Sign up

Export Citation Format

Share Document