scholarly journals Kinerja Spectrum Sensing Dengan Metode Cyclostationary Feature Detector Pada Radio Kognitif

Author(s):  
HENDRY CAHYO ◽  
DWI ARYANTA ◽  
NASRULLAH ARMI

ABSTRAKPerkembangan dalam dunia telekomunikasi nirkabel terutama spektrum frekuensi adalah hal yang perlu mendapatkan perhatian penting. Spektrum frekuensi merupakan sumber daya yang terbatas, penggunaannya harus dilakukan secara efisien dan se-maksimal mungkin. Penelitian ini membahas teknik spectrum sensing pada radio kognitif untuk menghadapi masalah keterbatasan penggunaan spektrum frekuensi. Radio kognitif merupakan sistem radio cerdas yang bisa mengatur parameternya seperti frekuensi kerja, daya pancar, dan skema modulasi secara optimal dalam melakukan proses komunikasi. Spectrum sensing merupakan teknik untuk memaksimalkan penggunaan spektrum frekuensi. Penelitian ini membandingkan kinerja metode cyclostationary feature detection dan metode energy detection pada teknik spectrum sensing menggunakan software matlab sehingga dapat diketahui bahwa kinerja cyclostationary feature detection untuk nilai Pd = 0,85 lebih handal sebesar 0,2 untuk fungsi probability of false dan lebih handal sebesar 2 dB untuk fungsi signal to noise ratio daripada energy detection.Kata kunci: radio kognitif, spectrum sensing, cyclostationary feature detection, energy detection, probability of false alarm. ABSTRACTDevelopments in the world of wireless telecommunications specially frequency spectrum is an important thing to get attention. Frequency spectrum is afinite resource, its use must be efficiently and as maximum as possible. This study discuss the technique of spectrum sensing in cognitive radio to faces the problem using restrictiveness of frequency spectrum. Cognitive radio is a smart radio system that can adjust its parameters like work frequency, emission power, and modulation scheme are optimal in the communication process. Spectrum sensing is a technique to maximize the use of the frequency spectrum. This study compared performance of cyclostationary feature detection methodh with energy detection methodh in spectrum sensing technique using matlab software so ascertainable that cyclostationary feature detection performance for Pd value 0,85 better about 0,2 for probability of false alarm function and better about 2 dB for signal to noise ratio function than energy detection.Keywords:  cognitif radio, spectrum sensing, cyclostationary feature detection, energy detection, probability of false alarm.

2013 ◽  
Vol 411-414 ◽  
pp. 1521-1528 ◽  
Author(s):  
Yu Yang ◽  
Yan Li Ji ◽  
Han Hui Li ◽  
Du Lei ◽  
Meng Rui

In this paper, we investigate the features of energy detection and cyclostationary feature detection for spectrum sensing. In order to combine their advantages, we propose an adaptive two-stage sensing scheme which performs spectrum sensing using an energy detector first in cognitive radio networks. Then in the second stage, this scheme decides whether or not to implement cyclostationary feature detection based on the sensing results of the first stage. On the premise of meeting a given constraint on the probability of false alarm, the goal of our proposed scheme is to optimize the probability of detection and sensing speed at the same time. In order to obtain the optimal detection thresholds, we can formulate the detection model as a nonlinear optimization problem. Furthermore, the simulation results show that the proposed scheme improves the performance of spectrum sensing compared with the ones where only energy detection or cyclostationary feature detection is performed.


2014 ◽  
Vol 643 ◽  
pp. 105-110
Author(s):  
Yuan Li ◽  
Jia Yin Chen ◽  
Xiao Feng Liu ◽  
Ming Chuan Yang

Aiming at the situation where the double-threshold detection has been widely used without complete mathematical proof and condition of application, this paper proves its correctness under the circumstance of spectrum sensing, and circulates the condition where this method can work. The proof and simulation show that, comparing with traditional energy detection, this method can increase the probability of detection by 27% to 42% at most when the SNR is between-15dB and-2dB, while the probability of false alarm is increased by less than 2%.


2018 ◽  
Vol 15 (1) ◽  
pp. 51-54
Author(s):  
Mohanad Abdulhamid

Abstract This paper measures the performance of cooperative spectrum sensing, over Rayleigh fading channel and additive white Gaussian noise, based on softened two-bit hard combination scheme. Two measures based on energy detection are considered including effect of false alarm probability, and effect of number of users. Simulation results show that the detection probability increases with the increase of false alarm probability, number of users, and signal-to-noise-ratio.


2020 ◽  
Vol 14 ◽  

As the demand of wireless communication increases exponentially, with the same ratio scarcity of spectrum also originates. To overcome this spectrum scarcity a novel approach, Cognitive Radio (CR) shows development of an opportunistic and promising technology. This paper explores implementation and analysis of the CR spectrum sensing techniques such as Matched filtering, Energy detection and Cyclostationary feature detection on MATLAB platform by simulation. We analyze performance of these techniques over, Nakagami-m fading channel with AWGN channel for both the BPSK and QPSK modulation.


2020 ◽  
Vol 3 (3) ◽  
pp. 1-11
Author(s):  
Muntaser S. Falih ◽  
Hikmat N. Abdullah

In this paper a new blind energy detection spectrum-sensing method based on Discreet Wavelet Transform (DWT) is proposed. The method utilizes the DWT sub-band to collects the received energy. The proposed method recognizes the Primary User (PU) signal from noise only signal using the differences in the collected energy in first and last sub-bands of one level DWT. The simulation results show that the proposed method achieves improved detection probability especially at low Signal to Noise Ratio (SNR) compared to Conventional Energy Detector (CED). The results also show that the proposed method has shorter sensing time and less Energy Consumption (EC) compared to CED due to using small number of processed sample. Therefore, this method is suitable for Cognitive Radio (CR) applications where only limited energy like device battery is available.


Author(s):  
Ala Eldin Omer

Most frequency spectrum bands are licensed to certain services to avoid the interference between various networks, but the spectrum occupancy measurements show that few portions of this spectrum are fully efficiently used. Cognitive radio is a future radio technology that is aware of its environment, internal state, and can change its operating behavior (transmitter parameters) accordingly. Through this technology the unlicensed users can use the underutilized spectrum without causing any harmful interference to the licensed users. Its key domains are sensing, cognition, and adaptation. The spectrum sensing problem is one of the most challenging issues in cognitive radio systems to detect the available frequency bands. This chapter introduces the concepts of various transmitter detection techniques, namely energy detection, matched filter detection, and cyclostationary feature detection. The chapter also discusses other sensing techniques that are introduced to enhance the detection performance of the conventional energy detector. Additionally, the introduced sensing techniques are implemented using extensive MATLAB simulations and their performances are evaluated and compared in terms of sensing time, detection sensitivity, and ease of implementation. The implementation is based on BPSK and QPSK modulation schemes under various SNR values for AWGN noisy channel with Rayleigh fading.


2018 ◽  
Vol 14 (09) ◽  
pp. 190 ◽  
Author(s):  
Shewangi Kochhar ◽  
Roopali Garg

<p>Cognitive Radio has been skillful technology to improve the spectrum sensing as it enables Cognitive Radio to find Primary User (PU) and let secondary User (SU) to utilize the spectrum holes. However detection of PU leads to longer sensing time and interference. Spectrum sensing is done in specific “time frame” and it is further divided into Sensing time and transmission time. Higher the sensing time better will be detection and lesser will be the probability of false alarm. So optimization technique is highly required to address the issue of trade-off between sensing time and throughput. This paper proposed an application of Genetic Algorithm technique for spectrum sensing in cognitive radio. Here results shows that ROC curve of GA is better than PSO in terms of normalized throughput and sensing time. The parameters that are evaluated are throughput, probability of false alarm, sensing time, cost and iteration.</p>


An efficient bandwidth allocation and dynamic bandwidth access away from its previous limits is referred as cognitive radio (CR).The limited spectrum with inefficient usage requires the advances of dynamic spectrum access approach, where the secondary users are authorized to utilize the unused temporary licensed spectrum. For this reason it is essential to analyze the absence/presence of primary users for spectrum usage. So spectrum sensing is the main requirement and developed to sense the absence/ presence of a licensed user. This paper shows the design model of energy detection based spectrum sensing in frequency domain utilizing Binary Symmetric Channel (BSC) ,Additive white real Gaussian channel (AWGN), Rayleigh fading channel users for 16-Quadrature Amplitude Modulation(QAM) which is utilized for the wide band sensing applications at low Signal to noise Ratio(SNR) level to reduce the false error identification. The spectrum sensing techniques has least computational complexity. Simulink model for the energy detection based spectrum sensing using frequency domain in MATLAB 2014a.


Sign in / Sign up

Export Citation Format

Share Document