scholarly journals An Investigation on Optimum Process Parameters in Terms of Surface Roughness for Turning Titanium Alloy Ti-6Al-4V Using Coated Carbide

Author(s):  
Abdul Md Mazid ◽  
Md. Shahanur Hasan ◽  
Kazi Badrul Ahsan

The quality of machined parts and the productivity of machining that leads to economic sustainability.  These factors are also vital for machinability improvement for materials, as well as, for economically sustainable manufacturing. Due to their poor machinability titanium alloys (Ti-alloys) are categorised as difficult-to-machine materials. For the same reason products made of Ti-alloys are highly expensive and are used only in strategic and sophisticated industries.  A series of real-life experimental investigations was carried out to reveal the economic optimal zones of machining parameters that can produce the best possible surface roughness in machining Ti-6Al-4V alloy, using the coated carbide cutting tools, in shortest period of operation time. As the output of the research, for using the coated carbide tools for machining the investigated Ti-alloy, optimal zones of cutting speed, feed rate and depth of cut have been proposed and presented in graphical format. The current research revealed that all three groups (with nose radius Nr = 0.4, 0.8, and 1.2 mm) of coated carbide tools are capable to produce best surface finish, ranging between Ra = 0.5 - 1.0 µm, with cutting speed starting at V = 60 m/min and beyond at least up to V = 250 m/min while keeping the feed rate and depth of cut as constants as f = 0.1 mm/rev and d = 0.5 mm. The data on the graphs may help researchers, engineers and manufacturers to select optimal economic cutting speed, feed rate and depth of cut to achieve a certain level of surface roughness of machined components as assigned by the product designer on the part drawing. This reduces the production cost substantially, reduces number of defect products and improves product quality for machined parts.

Mechanika ◽  
2019 ◽  
Vol 25 (6) ◽  
pp. 487-500
Author(s):  
Septi Boucherit ◽  
Sofiane Berkani ◽  
Mohamed Athmane Yallese ◽  
Abdelkrim Haddad ◽  
Salim Belhadi

The present paper investigates the cutting parameters pertaining to the turning of X2CrNi18-09 austenitic stainless steel that are studied and optimized using both RSM and desirability approaches. The cutting tool inserts used are the CVD coated carbide. The cutting speed, the feed rate and the depth of cut represent the main machining parameters considered. Their influence on the surface roughness and the cutting force are further investigated using the ANOVA method. The results obtained lead to conclude that the feed rate is the surface roughness highest influencing parameter with a contribution of 89.69%.The depth of cut and the feed rate are further identified as the most important parameters affecting the cutting force with contributions of 46.46% and 39.04% respectively. The quadratic mathematical models presenting the progression of the surface roughness and the cutting force and based on the machining parameters considered (cutting speed, feed rate and depth of cut) were obtained through the application of the RSM method. They are presented and compared to the experimental results. Good agreement is found between the two sections of the investigation. Furthermore, the flank wear of the CVD-coated carbide tool (GC2015) is found to increase with both cutting speed and cutting time. A higher tool life represented by t=44min is observed at cutting speed, feed rate and depth of cut of 280m/min,0.08mm/rev and 0.2mm respectively. Moreover and at low cutting speeds, the formation of micro weld is noticed and leads to an alteration of the surface roughness of the work piece. Finally, optimizing the machining parameters with the objective of achieving an improved surface roughness was accomplished through the application of the Desirability Function approach. This enabled to finding out the optimal parameters for maximal material removal rate and best surface quality for a cutting speed of 350m/min, a feed rate of 0.088 mm/rev and a depth of cut of 0.9mm.  


Author(s):  
Ahmadreza Hosseini Tazehkandi ◽  
Mohammadreza Shabgard ◽  
Farid Pilehvarian ◽  
Nakisa Farshfroush

Nickel-based Inconel X-750 superalloy is widely applied in aerospace industry and manufacturing of gas turbine blades, power generators and heat exchangers due to its exclusive properties. As a consequence of low heat transfer coefficient and work-hardening properties, this alloy is known as a poorly machinable alloy. In this work, effect of machining parameters (cutting speed, feed rate and depth of cut) on cutting forces and surface roughness was investigated during turning of Inconel alloy X-750 with coated carbide tool. In order to meet the demands of the environment-friendly cutting processes and human health, biodegradable vegetable oil (BioCut 4600) was selected as the cutting fluid. The results were analyzed using response surface methodology and statistical analysis of variance, and mathematical models for cutting forces and surface roughness were proposed. Results indicated that feed rate and cutting speed were the most effective parameters on the surface roughness. However, depth of cut was the most effective parameter on cutting forces in comparison with cutting speed and feed rate. Eventually, in order to achieve the main aims of industrial production in large amounts and green manufacturing, the ranges for the best cutting conditions were presented.


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2018 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Yusuf Fedai ◽  
Hediye Kirli Akin

In this research, the effect of machining parameters on the various surface roughness characteristics (arithmetic average roughness (Ra), root mean square average roughness (Rq) and average maximum height of the profile (Rz)) in the milling of AISI 4140 steel were experimentally investigated. Depth of cut, feed rate, cutting speed and the number of insert were considered as control factors; Ra, Rz and Rq were considered as response factors. Experiments were designed considering Taguchi L9 orthogonal array. Multi signal-to-noise ratio was calculated for the response variables simultaneously. Analysis of variance was conducted to detect the significance of control factors on responses. Moreover, the percent contributions of the control factors on the surface roughness were obtained to be the number of insert (71.89 %), feed (19.74 %), cutting speed (5.08%) and depth of cut (3.29 %). Minimum surface roughness values for Ra, Rz and Rq were obtained at 325 m/min cutting speed, 0.08 mm/rev feed rate, 1 number of insert and 1 mm depth of cut by using multi-objective Taguchi technique.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2014 ◽  
Vol 699 ◽  
pp. 198-203 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Aaron Yu Long ◽  
Md Ali Mohd Amran ◽  
Mohd Shahir Kasim ◽  
Abu Bakar Mohd Hadzley ◽  
...  

Polyetheretherketones (PEEK) has been widely used as biomaterial for trauma, orthopaedic and spinal implants. Component made from Polyetheretherketones generally required additional machining process for finishing which can be a problem especially to attain a good surface roughness and dimensional precision. This research attempts to optimize the machining and processing parameters (cutting speed, feed rate and depth of cut) for effectively machining Polyetheretherketones (PEEK) implant material using carbide cutting tools. Response Surface Methodology (RSM) technique was used to assess the effects of the parameters and their relations towards the surface roughness values. Based on the analysis results, the optimal machining parameters for the minimum surface roughness values were by using cutting speed of 5754 rpm, feed rate of 0.026 mm/tooth and 5.11 mm depth of cut (DOC).


2014 ◽  
Vol 903 ◽  
pp. 135-138
Author(s):  
Zahari Taha ◽  
Hadi Abdul Salaam ◽  
Phoon Sin Ye ◽  
Tuan Muhammad Yusoff Shah Tuan Ya

This paper presents a study on the effect of Ranque-Hilsch vortex tube air cooling on surface roughness quality and carbon footprint when turning mild steel workpiece with coated carbide cutting tool. The cutting parameters involved in this study were cutting speed, feed rate and depth of cut. The cutting speed and feed rate were fixed at 160 m/min and 0.10, 0.18 and 0.28 mm/rev, while the depth of cut was varied from 1.0 to 4.0 mm. During the turning process, the cutting temperatures were measured using infrared thermometer and the power consumption was measured using a power and harmonics analyzer and then converted into carbon footprint. The machined parts surface roughness were measured using a surface roughness tester. The results show that machining with Ranque - Hilsch vortex tube reduces the cutting temperature, but the surface roughness and carbon footprint is better under ambient condition except at a higher feedrate.


2013 ◽  
Vol 310 ◽  
pp. 348-351 ◽  
Author(s):  
Hadi Abdul Salaam ◽  
Phoon Sin Ye ◽  
Zahari Taha ◽  
Tuan Muhammad Yusoff Shah Tuan Ya

This paper presents a study of the effect of Ranque-Hilsch vortex tube air cooling on surface roughness quality and power consumption when turning mild steel material with coated carbide cutting tool. The cutting parameters involved in this study were cutting speed, feed rate and depth of cut. The cutting speed and feed rate were fixed at 160 m/min and 0.28 mm/rev, while the depth of cut was varied from 1.0 to 4.0 mm. During the turning process, the cutting temperatures were measured using an infrared thermometer and the power consumption was measured using a power and harmonics analyzer. The machined parts surface roughnesses were measured using a surface roughness tester. The results show that cooling using the Ranque-Hilsch vortex tube air cooling reduces the cutting temperature and the power consumption, but the surface roughness results is better when cooling with environment air.


2012 ◽  
Vol 499 ◽  
pp. 186-191
Author(s):  
Zong Yang Zhang ◽  
Zhan Qiang Liu ◽  
Xing Ai ◽  
B.L. Wang

This paper deals with an experimental research on the wear mechanism of coated carbide tools in dry boring of the titanium alloys TC11 which are commonly used for aero-engines. The wear mechanism of coated tool inserts was investigated at various combinations of cutting speed, feed rate, and depth of cut. Analysis carried out with the SEM suggests that adhesive wear and coating delamination are the dominant wear mechanisms under low speed and feed rate and depth of cut; while chipping and breakage are the dominant wear mechanisms for the combinations of high cutting speed, feed rate, and depth of cut. There was no observation of oxygen existing based on the analysis of SEM which indicated no oxidation wear generated during the boring machining. The excellent chemical stability of TiAlN coating and oxidation resistance performance made contribution to prevent oxidation wear. Another reason was that boring temperature was lower than oxidation temperature.


Teknomekanik ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
Krisko Govinda ◽  
Abd Aziz

Abstract The application in the industrial world, the use of scrap machines by operators pay little attention to the surface roughness of objects produced. The roughness that occurs is influenced by machining parameters such as cutting speed, feed motion, and cutting thickness. The purpose of this study was to determine the effect of cutting speed, feed motion and cutting thickness on the level of roughness of ST 37 steel surface in the scrap process. This type of research is an experimental method that determines the level of steel surface roughness from variations in cutting speed, feed motion, and cutting thickness to ST 37 steel surface roughness. The material used is 70 mm long, 25 mm wide, and 25 mm high. Data processing results from the level of roughness testing using the SPSS version 16.0 application. The results of data analysis showed (1) the significant effect of cutting speed on the level of surface roughness of 5.5%. (2) the significant effect of feeding on the level of surface roughness of 60.9%. (3) significant effect between cutting thickness on surface roughness level of 0.2% (4) significant influence between cutting speed, feed motion, and cutting thickness on the level of surface roughness with a 66.6% influence. Based on data analysis, it can be concluded that cutting speed, feeding motion, cutting thickness are factors that influence the level of steel surface roughness of ST 37 in the scrap process. Keywords: Cutting Speed, Feed Rate, Depth of Cut, Roughness Level, Experimental.


Sign in / Sign up

Export Citation Format

Share Document