Wear Mechanisms of Coated Carbide Tools in Dry Boring of Titanium Alloys

2012 ◽  
Vol 499 ◽  
pp. 186-191
Author(s):  
Zong Yang Zhang ◽  
Zhan Qiang Liu ◽  
Xing Ai ◽  
B.L. Wang

This paper deals with an experimental research on the wear mechanism of coated carbide tools in dry boring of the titanium alloys TC11 which are commonly used for aero-engines. The wear mechanism of coated tool inserts was investigated at various combinations of cutting speed, feed rate, and depth of cut. Analysis carried out with the SEM suggests that adhesive wear and coating delamination are the dominant wear mechanisms under low speed and feed rate and depth of cut; while chipping and breakage are the dominant wear mechanisms for the combinations of high cutting speed, feed rate, and depth of cut. There was no observation of oxygen existing based on the analysis of SEM which indicated no oxidation wear generated during the boring machining. The excellent chemical stability of TiAlN coating and oxidation resistance performance made contribution to prevent oxidation wear. Another reason was that boring temperature was lower than oxidation temperature.

2011 ◽  
Vol 314-316 ◽  
pp. 1142-1145
Author(s):  
Zong Yang Zhang ◽  
Xing Ai ◽  
Zhan Qiang Liu ◽  
Min Wang

This paper deals with an experimental research on wear properties and mechanisms of coated carbide tools in dry turning of 300M steel which are widely used to manufacture the central spindle, wheel gear, aerofoil fastener and so on. Based on Makarow’s theory, the minimum surface wear rate hs = 2.88 μm and the optimal cutting speed v = 200 m/mim were attained under the condition of the feed rate f = 0.1 mm/r and the depth of cut ap = 0.15 mm. Analysis carried out with the SEM suggests that adhesion of workpiece material and chipping are dominant wear mechanisms. There was no observation of oxygen existing based on the analysis of EDS which indicated no oxidation wear generated during the turning machining.


Author(s):  
Abdul Md Mazid ◽  
Md. Shahanur Hasan ◽  
Kazi Badrul Ahsan

The quality of machined parts and the productivity of machining that leads to economic sustainability.  These factors are also vital for machinability improvement for materials, as well as, for economically sustainable manufacturing. Due to their poor machinability titanium alloys (Ti-alloys) are categorised as difficult-to-machine materials. For the same reason products made of Ti-alloys are highly expensive and are used only in strategic and sophisticated industries.  A series of real-life experimental investigations was carried out to reveal the economic optimal zones of machining parameters that can produce the best possible surface roughness in machining Ti-6Al-4V alloy, using the coated carbide cutting tools, in shortest period of operation time. As the output of the research, for using the coated carbide tools for machining the investigated Ti-alloy, optimal zones of cutting speed, feed rate and depth of cut have been proposed and presented in graphical format. The current research revealed that all three groups (with nose radius Nr = 0.4, 0.8, and 1.2 mm) of coated carbide tools are capable to produce best surface finish, ranging between Ra = 0.5 - 1.0 µm, with cutting speed starting at V = 60 m/min and beyond at least up to V = 250 m/min while keeping the feed rate and depth of cut as constants as f = 0.1 mm/rev and d = 0.5 mm. The data on the graphs may help researchers, engineers and manufacturers to select optimal economic cutting speed, feed rate and depth of cut to achieve a certain level of surface roughness of machined components as assigned by the product designer on the part drawing. This reduces the production cost substantially, reduces number of defect products and improves product quality for machined parts.


2012 ◽  
Vol 497 ◽  
pp. 94-98
Author(s):  
Yang Qiao ◽  
Xiu Li Fu ◽  
Xue Feng Yang

Powder metallurgy (PM) nickel-based superalloy is regarded as one of the most important aerospace industry materials, which has been widely used in advanced turbo-engines. This work presents an orthogonal design experiments to study the cutting force and cutting temperature variations in the face milling of PM nickel-based superalloy with PVD coated carbide tools. Experimental results show that with the increase of feed rate and depth of cut, there is a growing tendency in cutting force, with the increase of cutting speed, cutting force decreases. Among the cutting parameters, feed rate has the greatest influence on cutting force, especially when cutting speed exceeds 60m/min. With the increase of all the cutting parameters, cutting temperature increases. However the cutting temperature increases slightly as the increasing of feed rate. Tool failure mechanisms in face milling of PM nickel-based superalloy are analyzed. It is shown that the breakage and spalling on the cutting edge are the most dominate failure mechanisms, which dominates the deterioration and final failure of the coated carbide tools.


2019 ◽  
Vol 969 ◽  
pp. 756-761
Author(s):  
Hari Vasudevan ◽  
Ramesh Rajguru ◽  
Moeiz Shaikh ◽  
Arsalan Shaikh

Many difficult to machine materials, such as Inconel 625Ni-based super alloy, are uncommon class of metallic materials with exceptional combination of greater thermal strength, toughness and resistance to deterioration. They have extensive applications in the manufacturing of new aero-engines, besides its enormous uses in marine, chemical and oil & petrochemical industries. In the context of its wide range of applications, there is a need for efficiently processing better methods in the manufacturing of such difficult to machine materials. This study consists of the turning operation of Ni-based super alloy Inconel 625 without coolant, carried out by physical vapour deposition (PVD) coated carbide inserts. The response parameters, such as surface roughness and material removal rate were evaluated in terms of cutting speed, feed rate and depth of cut. Sixteen experiments were carried out, based on Taguchi's Design of Experiments using orthogonal array. The resulting analysis was done based on response graph. The experimental results revealed that the feed rate was the most influential factor, followed by the depth of cut and cutting speed. The optimal parameters achieved were cutting speed of 90 m/min, the feed rate of 0.35 mm/rev and the depth of cut 0.2 mm.


Author(s):  
Neelesh Ku. Sahu ◽  
A. B. Andhare

Surface roughness is an important surface integrity parameter for difficult to cut alloys such as Titanium alloys (Ti-6Al-4V). In the present work, initially a mathematical model is developed for predicting surface roughness for turning operation using Response Surface Methodology (RSM). Later, a recently developed advanced optimization algorithm named as Teaching Learning Based Optimization (TLBO) is used for further parameter optimization of the equation developed using RSM. The design of experiments was performed using central composite design (CCD). Analysis of variance (ANOVA) demonstrated the significant and non-significant parameters as well as validity of predicted model. RSM describes the effect of main and mixed (interaction) variables on the surface roughness of titanium alloys. RSM analysis over experimental results showed that surface roughness decreased as cutting speed increased whereas it increased with increase in feed rate. Depth of cut had no effect on surface roughness. By comparing the predicted and measured values of surface roughness the maximum error was found to be 7.447 %. It indicates that the developed model can be effectively used to predict the surface roughness. Further optimization of the roughness equation was carried out by TLBO method. It gave minimum surface roughness as 0.3120 μm at the cutting speed of 1704 RPM (171.217 m/min), feed rate of 55.6 mm/min (.033 mm/rev) and depth of cut of 0.7 mm. These results were confirmed by confirmation experiment and were better than that of RSM.


2015 ◽  
Vol 651-653 ◽  
pp. 1271-1276 ◽  
Author(s):  
Anil Meena ◽  
Mohamed El Mansori

Near-net shape austempered ductile iron (ADI) castings can be considered as a significant economic advantage to the increasing industrial demand for cost and weight efficient materials. However, due to microstructure induced inherent properties, ADI is considered as hard to machine material. The present paper thus investigates the interaction between the microstructural characteristics of ADI and wear mechanisms of PVD-coated carbide tools. The inherent properties of ADI materials are the function of its microstructural characteristics (retained austenite volume content and its carbon content, ferritic cell size, etc.) which can be controlled by the austempering parameters. Experimental studies of dry drilling of different ADI materials with the PVD-coated carbide tools were carried out at a cutting speed of 60 m/min and at a feed of 0.15 mm/rev. The wear mechanisms of the cutting tools were studied by using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis techniques. The obtain results revealed the evolution of crater wear as the main wear mode. In addition, it provides the key findings aims to correlating the machining characteristics of ADI with its microstructure and production conditions.


2015 ◽  
Vol 761 ◽  
pp. 318-323 ◽  
Author(s):  
Mohd Shahir Kasim ◽  
Mohamad Hazizan Atan ◽  
C.H. Che Haron ◽  
Jaharah A. Ghani ◽  
Mohd Amri Sulaiman ◽  
...  

This article presents the tool wear mechanism when machining Aluminium alloy 6061-T6 with PVD coated carbide under dry cutting condition. Cutting parameters selected were cutting speed, Vc = 115-145 m/min; feed rate fz = 0.15-0.2 mm/tooth and depth of cut, ap = 0.5-0.75 mm. The result showed the tool life of PVD TiAlN ranged from 11 to 97 min. Full factorial approach was employed to exhibit relationship between parameter input and output. From the analysis, cutting speed was found to be the most significant factor for tool performance followed by feed rate and depth of cut. It was also found that most of failure modes occurred were notch wear and flaking near those found near depth of cut line.


Author(s):  
J S Dureja ◽  
V K Gupta ◽  
V S Sharma ◽  
M Dogra

The present study aims to investigate the wear mechanisms of a TiN-coated mixed ceramic tool prevalent under different machining conditions during hard turning of hot tool die steel. The different wear mechanisms observed are abrasion wear at low cutting speed, low feed rate, and highest work piece hardness; formation of protective layer and built-up edge (BUE) resulting from tribochemical reactions between constituents of tool and work piece material at moderate speed. High temperature accompanied by high cutting speed resulted in the removal of the protective layer and suppressed the BUE formation. Hard carbide particles of work material at a higher feed rate severely gouged the tool flank land. Chipping and brittle fractures were observed at very low and high depth of cut. Adhesion of work piece material followed by plastic deformation and notching was clearly visible at low work piece hardness. The influence of cutting speed, feed rate, depth of cut, and work piece hardness on the progressive tool flank wear, and flank wear rate (VBr-μm/km) in the steady wear region was also analysed.


2014 ◽  
Vol 903 ◽  
pp. 135-138
Author(s):  
Zahari Taha ◽  
Hadi Abdul Salaam ◽  
Phoon Sin Ye ◽  
Tuan Muhammad Yusoff Shah Tuan Ya

This paper presents a study on the effect of Ranque-Hilsch vortex tube air cooling on surface roughness quality and carbon footprint when turning mild steel workpiece with coated carbide cutting tool. The cutting parameters involved in this study were cutting speed, feed rate and depth of cut. The cutting speed and feed rate were fixed at 160 m/min and 0.10, 0.18 and 0.28 mm/rev, while the depth of cut was varied from 1.0 to 4.0 mm. During the turning process, the cutting temperatures were measured using infrared thermometer and the power consumption was measured using a power and harmonics analyzer and then converted into carbon footprint. The machined parts surface roughness were measured using a surface roughness tester. The results show that machining with Ranque - Hilsch vortex tube reduces the cutting temperature, but the surface roughness and carbon footprint is better under ambient condition except at a higher feedrate.


2015 ◽  
Vol 787 ◽  
pp. 643-647
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
Sundaravel Vijayan

Metal matrix composites (MMC) are the combination of base metal matrix and reinforcing materials like SiC, Al2O3, etc. The present research is focused on the machinability studies of Al 6061 reinforced with 10% wtof Al2O3 particles using multi layered coated carbide inserts. Fabricated samples by stir casting route were turned by the most variable factors, cutting speed, depth of cutand by a constant feed rate of 0.206 mm/rev. Surface roughness and tool wear are considered asoutput. Experiments are conducted by varying the cutting speed while keeping feed rate and depth of cut as constant. After the optimum cutting speed was determined, the depth of cut is varied by keeping the cutting speedand feed rateas constant.Based on the optimum cutting speed (150 m/min), depth of cut (1.2 mm) and feed rate (0.206 mm/rev), a long run test was carried out to find out the tool life and surface finish. But due to the softness nature built up edge formation is obtained. At the optimal parametric combination, the built up edge obtained is less than 2 mm for a machining time of 425 s


Sign in / Sign up

Export Citation Format

Share Document