scholarly journals Optimization of machining parameters in face milling using multi-objective Taguchi technique

2018 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Yusuf Fedai ◽  
Hediye Kirli Akin

In this research, the effect of machining parameters on the various surface roughness characteristics (arithmetic average roughness (Ra), root mean square average roughness (Rq) and average maximum height of the profile (Rz)) in the milling of AISI 4140 steel were experimentally investigated. Depth of cut, feed rate, cutting speed and the number of insert were considered as control factors; Ra, Rz and Rq were considered as response factors. Experiments were designed considering Taguchi L9 orthogonal array. Multi signal-to-noise ratio was calculated for the response variables simultaneously. Analysis of variance was conducted to detect the significance of control factors on responses. Moreover, the percent contributions of the control factors on the surface roughness were obtained to be the number of insert (71.89 %), feed (19.74 %), cutting speed (5.08%) and depth of cut (3.29 %). Minimum surface roughness values for Ra, Rz and Rq were obtained at 325 m/min cutting speed, 0.08 mm/rev feed rate, 1 number of insert and 1 mm depth of cut by using multi-objective Taguchi technique.

2016 ◽  
Vol 689 ◽  
pp. 7-11 ◽  
Author(s):  
Y. Şahin ◽  
Senai Yalcinkaya

The selection of optimum machining parameters plays a significant role for the quality characteristics of products and its costs for grinding. This study describes the optimization of the grinding process for an optimal parametric combination to yield a surface roughness using the Taguchi method. An orthogonal array and analysis of variance are employed to investigate the effects of cutting environment (A), depth of cut (B) and feed rate (C) on the surface roughness characteristics of mold steels. Confirmation experiments were conducted to verify the optimal testing parameters. The experimental results indicated that the surface finish decreased with cutting-fluid and depth of cut, but decreased with increasing feed rate. It is revealed that the cutting fluid environment had highest physical as well as statistical influence on the surface roughness (71.38%), followed by depth of cut (25.54%), but the least effect was exhibited by feed rate (1.62%).


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2015 ◽  
Vol 761 ◽  
pp. 287-292
Author(s):  
Raja Izamshah ◽  
Zainudin Zuraidah ◽  
Mohd Shahir Kasim ◽  
M. Hadzley ◽  
M. Amran

Cellulose based hybrid composites are gaining popularity in the growing green communities. With extensive studies and increasing applications for future advancement, the need for an accurate and reliable guidance in machining this type of composites has increased enormously. Smooth and defect free machined surface are always the ultimate objectives. The present work deals with the study of machining parameters (i.e. spindle speed, feed rate and depth of cut) and their effects on machining performance (i.e. surface roughness and delamination) to establish an optimized setup of machining parameters in achieving multi objective machining performance. Cellulose based hybrid composites consist of jute (a bast fiber) and glass fiber embedded in polyester resins. Response Surface Methodology (RSM) using Box-Behnken Design (BBD) was chosen as the design of experiment approach for this study. Based on that experimental approach, 17 experimental runs were conducted. Mathematical model for each response was developed based on the experimental data. Adequacy of the models were analyzed statistically using Analysis of Variance (ANOVA) in determining the significant input variables and possible interactions. The multi objective optimization was performed through numerical optimization, and the predicted results were validated. The agreement between the experimental and selected solution was found to be strong, between 95% to 96%, thus validating the solution as the optimal machining condition. The findings suggest that feed rate was the main factor affecting surface roughness and delamination .


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2014 ◽  
Vol 699 ◽  
pp. 198-203 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Aaron Yu Long ◽  
Md Ali Mohd Amran ◽  
Mohd Shahir Kasim ◽  
Abu Bakar Mohd Hadzley ◽  
...  

Polyetheretherketones (PEEK) has been widely used as biomaterial for trauma, orthopaedic and spinal implants. Component made from Polyetheretherketones generally required additional machining process for finishing which can be a problem especially to attain a good surface roughness and dimensional precision. This research attempts to optimize the machining and processing parameters (cutting speed, feed rate and depth of cut) for effectively machining Polyetheretherketones (PEEK) implant material using carbide cutting tools. Response Surface Methodology (RSM) technique was used to assess the effects of the parameters and their relations towards the surface roughness values. Based on the analysis results, the optimal machining parameters for the minimum surface roughness values were by using cutting speed of 5754 rpm, feed rate of 0.026 mm/tooth and 5.11 mm depth of cut (DOC).


2012 ◽  
Vol 576 ◽  
pp. 103-106 ◽  
Author(s):  
Muataz H.F. Al Hazza ◽  
Erry Yulian Triblas Adesta ◽  
Muhammad Riza ◽  
M.Y. Suprianto

In finishing end milling, not only good accuracy but also good roughness levels must be achieved. Therefore, determining the optimum cutting levels to achieve the minimum surface roughness is important for it is economical and mechanical issues. This paper presents the optimization of machining parameters in end milling processes by integrating the genetic algorithm (GA) with the statistical approach. Two objectives have been considered, minimum arithmetic mean roughness (Ra) and minimum Root-mean-square roughness (Rq). The mathematical models for the surface roughness parameters have been developed, in terms of cutting speed, feed rate, and axial depth of cut by using Response Methodology Method (RSM). Due to complexity of this machining optimization problem, a multi objective genetic algorithm (MOGA) has been applied to resolve the problem, and the results have been analyzed.


Teknomekanik ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
Krisko Govinda ◽  
Abd Aziz

Abstract The application in the industrial world, the use of scrap machines by operators pay little attention to the surface roughness of objects produced. The roughness that occurs is influenced by machining parameters such as cutting speed, feed motion, and cutting thickness. The purpose of this study was to determine the effect of cutting speed, feed motion and cutting thickness on the level of roughness of ST 37 steel surface in the scrap process. This type of research is an experimental method that determines the level of steel surface roughness from variations in cutting speed, feed motion, and cutting thickness to ST 37 steel surface roughness. The material used is 70 mm long, 25 mm wide, and 25 mm high. Data processing results from the level of roughness testing using the SPSS version 16.0 application. The results of data analysis showed (1) the significant effect of cutting speed on the level of surface roughness of 5.5%. (2) the significant effect of feeding on the level of surface roughness of 60.9%. (3) significant effect between cutting thickness on surface roughness level of 0.2% (4) significant influence between cutting speed, feed motion, and cutting thickness on the level of surface roughness with a 66.6% influence. Based on data analysis, it can be concluded that cutting speed, feeding motion, cutting thickness are factors that influence the level of steel surface roughness of ST 37 in the scrap process. Keywords: Cutting Speed, Feed Rate, Depth of Cut, Roughness Level, Experimental.


Author(s):  
Abdul Md Mazid ◽  
Md. Shahanur Hasan ◽  
Kazi Badrul Ahsan

The quality of machined parts and the productivity of machining that leads to economic sustainability.  These factors are also vital for machinability improvement for materials, as well as, for economically sustainable manufacturing. Due to their poor machinability titanium alloys (Ti-alloys) are categorised as difficult-to-machine materials. For the same reason products made of Ti-alloys are highly expensive and are used only in strategic and sophisticated industries.  A series of real-life experimental investigations was carried out to reveal the economic optimal zones of machining parameters that can produce the best possible surface roughness in machining Ti-6Al-4V alloy, using the coated carbide cutting tools, in shortest period of operation time. As the output of the research, for using the coated carbide tools for machining the investigated Ti-alloy, optimal zones of cutting speed, feed rate and depth of cut have been proposed and presented in graphical format. The current research revealed that all three groups (with nose radius Nr = 0.4, 0.8, and 1.2 mm) of coated carbide tools are capable to produce best surface finish, ranging between Ra = 0.5 - 1.0 µm, with cutting speed starting at V = 60 m/min and beyond at least up to V = 250 m/min while keeping the feed rate and depth of cut as constants as f = 0.1 mm/rev and d = 0.5 mm. The data on the graphs may help researchers, engineers and manufacturers to select optimal economic cutting speed, feed rate and depth of cut to achieve a certain level of surface roughness of machined components as assigned by the product designer on the part drawing. This reduces the production cost substantially, reduces number of defect products and improves product quality for machined parts.


2017 ◽  
Vol 909 ◽  
pp. 80-85 ◽  
Author(s):  
Mohd Rasidi Ibrahim ◽  
Tharmaraj Sreedharan ◽  
Nurul Aisyah Fadhlul Hadi ◽  
Mohammad Sukri Mustapa ◽  
Al Emran Ismail ◽  
...  

Machining parameters is a main aspect in performing turning operations using lathe machines. Cutting parameters such as cutting speed, feed rate and depth of cut gives big influence on the dynamic behavior of the machining system. In machining parts, surface quality and tool wear are the most crucial customer requirements. This is because the major indication of surface quality on machined part is the surface roughness and the value of tool wear. Hence, to improve the surface roughness and minimize the forming of tool wear, the optimum feed rate and cutting speed will be determined. The input parameter such as cutting speed, feed rate and depth of cut always influence the tool wear, surface roughness, cutting force, cutting temperature, tool life and dimensional accuracy. The D2 steel was being investigated from the perspective of the effect of cutting speed and feed rate on its surface roughness and tool wear. The results show that cutting speed is the main parameter which affects the surface roughness where the most optimum parameter would be at cutting speed of 173, 231 and 288 m/min with feed rate of 0.15 mm/rev. The tool wear strongly affected by feed rate where at 0.15 mm/rev the tool wear value is the lowest. The combination of high cutting speed and low feed rate was the best parameter to achieve smooth surface roughness.


2013 ◽  
Vol 685 ◽  
pp. 57-62
Author(s):  
Seyyed Pedram Shahebrahimi ◽  
Abdolrahman Dadvand

One of the most important issues in turning operations is to choose suitable parameters in order to achieve a desired surface finish. The surface finish in machining operation depends on many parameters such as workpiece material, tool material, tool coating, machining parameters, etc. The purpose of this research is to focus on the analysis of optimum cutting parameters to get the lowest surface roughness in turning Titanium alloy Ti-6Al-4V with the insert with the standard code DNMG 110404 under dry cutting condition, by the Taguchi method. The turning parameters are evaluated as cutting speed of 14, 20 and 28 m/min, feed rate of 0.12, 0.14 and 0.16 mm/rev, depth of cut of 0.3, 0.6 and 1 mm, each at three levels. The Experiment was designed using the Taguchi method and 9 experiments were conducted by this process. The results are analyzed using analysis of variance method (ANOVA). The results of analysis show that the depth of cut has a significant role to play in producing lower surface roughness that is about 63.33% followed by feed rate about 30.25%, and cutting speed has less contribution on the surface roughness. Also it was realized that with the use of the confirmation test, the surface roughness improved by 227% from its initial state.


Sign in / Sign up

Export Citation Format

Share Document