scholarly journals Current State and Prospects of Development of the Fuel and Energy Complex of France

2021 ◽  
Vol 14 (4) ◽  
pp. 6-14
Author(s):  
A. B. Sekacheva

This article examines the current state and features of the functioning of the fuel and energy complex (FEC) in France and its development prospects for the period up to 2050 as well. The author paid particular attention to the issues of nuclear power in this country and the possibility of replacing it with alternative sources in the medium and long term. The point of ensuring energy security in the use of nuclear power plants, which is solved thanks to effective state regulation of this industry, is considered. Separately, the author presented the analyses of energy problems of France in the interaction with the supranational structures of the European Union and considered the participation of this country in the development of a common energy policy for the integration. The author determined the advantages of the French fuel and energy sector in comparison with other EU member states. The results of the study substantiated conclusions about the prospects for further development in the context of the transition to a low-carbon economy. These prospects the author outlined in the country’s national carbon reduction strategy and long-Term energy program. Currently, achieving the targets set out in these documents is a difficult task, hence the inconsistency that is evident in the state energy policy. It is primarily due to the future of nuclear energy, which France has disagreed with the EU leadership and leading member States.

2019 ◽  
Vol 139 ◽  
pp. 01002 ◽  
Author(s):  
Kahraman Allaev ◽  
Tokhir Makhmudov

The data on the current state of energy in Uzbekistan are given. The need to diversify the structure of the energy balance of the republic is shown, which ensures the energy security of the state in the medium and long term. It is argued that the construction of a nuclear power plant in Uzbekistan is not only expedient, but also necessary. In the future, renewable energy and nuclear power plants will become the basis of energy in Uzbekistan.


Author(s):  
Frank Nuzzo ◽  
Ki-Sig Kang

Many Member States of the International Atomic Energy Agency (IAEA) have given high priority to long term operation of nuclear power plants beyond the timeframe originally anticipated (e.g. 30 or 40 years). Out of a total of 445 (369 GWe) operating nuclear power plants, 349 units (297 GWe) have been in operation for more than 20 years (as of November 2011) and many are engaged in investigations and studies aimed at prolonging the plant service life. The need for engineering support to operation, maintenance, safety review and life management for long term operation as well as education and training on LTO issues is increasingly evident. Plant life management (PLiM) techniques that can be defined as the integration of ageing and economic planning, have been used in operating nuclear power plants to maintain a high level of safety, optimize performance and justify long term operation (LTO) beyond the plant design life. In addition, as a follow up to the Fukushima accident, operators have become even more attentive to beyond design basis measures in the preparation of their plants for operation beyond their design life. In many countries, the safety performance of NPPs is periodically assessed and characterized via the periodic safety review (PSR) process. Regulatory review and acceptance of PSRs constitutes for these countries the licensing requirement for continued operation of the plant to the following PSR cycle (usually 10 years). In the USA and in other countries operating US designed plants, instead of a PSR process, a license renewal application (LRA) process is followed, which requires certain pre-requisites such as ageing management programmes, particularly for passive irreplaceable systems structures and components (SSCs). Active components are normally addressed via the maintenance rule (MR) requirements and other established regulatory processes. A third group of Member States have adopted a combined approach that incorporates elements of both the PSR process and selected LRA specific requirements, such as time limited ageing analysis. Taking into account this variety of approaches, the IAEA initiated work to collect and share information among Member States on good practices in plant life management for long term operation in nuclear power plants, by comparing the various approaches to the PSR reference and by drawing lessons learned from relevant applications and experiences.


2018 ◽  
pp. 3-10
Author(s):  
S. Kaltyhina ◽  
A. Shanchuk ◽  
Yu. Yesypenko ◽  
O. Pecherytsia

The paper presents an overview of changes and trends in the energy policy of the European Union during the recent years, and shows the impact of the energy security issues on the development of nuclear power industry in Europe. Further development of the nuclear power industry as a low carbon source of energy is considered in the context of a comprehensive approach to the struggle against the climate change. In addition, a short overview of the new energy strategy of Ukraine until 2035 is presented, which defines a complex of large-scale reforms in the energy sector in consideration of the European approaches and the EU energy strategy.


2021 ◽  
Vol 64 (7) ◽  
pp. 498-509
Author(s):  
S. A. Nikulin ◽  
S. O. Rogachev ◽  
V. A. Belov ◽  
A. A. Komissarov ◽  
V. Yu. Turilina ◽  
...  

One of the applications of construction low-carbon 22K steel (AISI 1022 type) is as a material for the vessel of a core catcher (CC) for nuclear power plants with VVER reactors. In the event of severe beyond design basis accident, the CC-vessel will be under conditions of prolonged hightemperature impacts, which can significantly change the structural state and lead to degradation of mechanical properties of the vessel material. Data on the effect of such actions on the mechanical properties and fracture resistance of welds (the properties of which usually differ from those of the base metal) from low-carbon steels are very limited in the literature. This makes it difficult to guarantee the reliability and safety prediction of CC. The purpose of this work was to carry out the comparative Charpy V-notch impact tests of the samples of base metal and weld metal of the 22K steel welded joint before and after long-term high-temperature heat treatment, simulating the thermal effect on the reactor vessel material of nuclear power plants during severe accidents. Welded joints of 22K steel sheets were obtained by the method of automatic argon-arc welding with a consumable electrode (welding wire SV-08G2S was used) in accordance with PNAE G-7-009–89. Based on the test results, the ductile–brittle transition curves were plotted and analysis of fracture surfaces after tests was carried out. The influence of structural factors on the impact toughness has been studied. It is shown that prolonged high-temperature exposure leads to an increase in the temperatures of beginning and end of the ductile-brittle transition by 30 – 50 °C and to the expansion of range of the ductile-brittle transition temperature by 15 – 25 °C of both base metal and weld metal of the welded joint.


Author(s):  
Andrey S. KIRILLOV ◽  
Aleksandr P. PYSHKO ◽  
Andrey A. ROMANENKO ◽  
Valery I. YARYGIN

The paper describes an overview of the history of development and the current state of JSC “SSC RF-IPPE” reactor research and test facility designed for assembly, research and full-scale life energy tests of space nuclear power plants with a thermionic reactor. The leading specialists involved in development and operation of this facility are represented. The most significant technological interfaces and upgrade operations carried out in the recent years are discussed. The authors consider the use of an oil-free pumping system as part of this facility during degassing and life testing. Proposed are up-to-date engineering solutions for development of the automated special measurement system designed to record NPP performance, including volt-ampere characteristics together with thermophysical and nuclear physical parameters of a ground prototype of the space nuclear power plant. Key words: reactor research and test facility, thermionic reactor, life energy tests, oil-free pumping system, automated special measurement system, volt-ampere characteristics.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3765
Author(s):  
Jarosław Brodny ◽  
Magdalena Tutak ◽  
Peter Bindzár

The global economic development is, to a great extent, dependent on access to large amounts of cheap energy sources. The growing social awareness of ecology and the enormous damage to the Earth’s ecosystem due to the production of energy from conventional sources have forced fundamental changes in the energy sector. Renewable energy is considered to be an opportunity for such changes. The current state of the art allows such changes to be made without restricting economic development. Therefore, activities related to the energy transition are being taken all over the world. The European Union has definitely managed to achieve the most tangible effects in this regard. This article presents the findings of the research aimed at presenting the current state of renewable energy in the European Union and analyzing the changes reported in this sector in the last decade. The research was carried out using a selected set of 11 indicators characterizing renewable energy in individual countries. These indicators were selected on the basis of literature review and own studies of the state of renewable energy and its development prospects. Based on these indicators, changes in the energy structure of individual European Union countries between 2008–2018 were determined. The study is divided into two main stages. The principal components analysis (PCA) was used for the first analysis. In turn, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was adopted to assess the level of renewable energy development in the European Union countries. Both these methods and the extended statistical analysis were applied to determine the state of renewable energy development in the European Union countries in the studied period and to divide the Member States into classes with different levels of development. The results of the study showed that the EU countries are characterized by significant differences in the development of RES during the period in question. The unquestionable leaders in this respect are Sweden, Austria, Finland, and Latvia. Based on the findings, it is possible to evaluate the effects of activities related to renewable energy development and to prepare assumptions for future activities. Additionally, both the research and its findings broaden the knowledge of the directions of renewable energy development in individual European Union countries. This is particularly important in the context of changes related to the need to reduce harmful substance emissions and the implementation of the European Green Deal idea.


Author(s):  
Carlota Rigotti ◽  
Júlia Zomignani Barboza

Abstract The return of foreign fighters and their families to the European Union has mostly been considered a security threat by member States, which consequently adopt repressive measures aimed at providing an immediate, short-term response to this perceived threat. In addition to this strong-arm approach, reintegration strategies have also been used to prevent returnees from falling back into terrorism and to break down barriers of hostility between citizens in the long term. Amidst these different strategies, this paper seeks to identify which methods are most desirable for handling returnees.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Mantas Povilaitis ◽  
Egidijus Urbonavičius

An issue of the stratified atmospheres in the containments of nuclear power plants is still unresolved; different experiments are performed in the test facilities like TOSQAN and MISTRA. MASPn experiments belong to the spray benchmark, initiated in the containment atmosphere mixing work package of the SARNET network. The benchmark consisted of MASP0, MASP1 and MASP2 experiments. Only the measured depressurisation rates during MASPn were available for the comparison with calculations. When the analysis was performed, the boundary conditions were not clearly defined therefore most of the attention was concentrated on MASP0 simulation in order to develop the nodalisation scheme and define the initial and boundary conditions. After achieving acceptable agreement with measured depressurisation rate, simulations of MASP1 and MASP2 experiments were performed to check the influence of sprays. The paper presents developed nodalisation scheme of MISTRA for the COCOSYS code and the results of analyses. In the performed analyses, several parameters were considered: initial conditions, loss coefficient of the junctions, initial gradients of temperature and steam volume fraction, and characteristic length of structures. Parametric analysis shows that in the simulation the heat losses through the external walls behind the lower condenser installed in the MISTRA facility determine the long-term depressurisation rate.


Sign in / Sign up

Export Citation Format

Share Document