scholarly journals Complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with ligand formed by condensation reaction of isatin with glutamic acid

2020 ◽  
Vol 45 (3) ◽  
pp. 12-27
Author(s):  
Wiesława Ferenc ◽  
Dariusz Osypiuk ◽  
Jan Sarzyński ◽  
Halina Głuchowska

The complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with ligand (H2L=C13H12N2O5) formed by condensation reaction of isatin and glutamic acid were synthesized. Their physico-chemical properties were characterized using elemental analysis, XRF, XRD, FTIR, TG–DSC and TG–FTIR methods and magnetic measurements (Gouy’s and SQUID-VSM methods). The complexes were obtained in crystalline forms (monoclinic or triclinic) with the formulae: M(LH)2·nH2O for Mn(II), Ni(II) and Zn(II) and ML·nH2O for Co(II) and Cu(II), where LH=C13H11N2O5–, L-=C13H10N2O52–, n = 1 for Mn(II), Cu(II) and Zn(II), n = 2 for Co(II) and n = 3 for Ni(II). In air at 293–1173 K they decompose in three steps forming finally the oxides of the appropriate metals. The gaseous decomposition products were identified as: H2O, CO2, CO, hydrocarbons and N2O. The magnetic moment values for complexes (except Zn(II) complex) show their paramagnetic properties with the ferro- and antiferromagnetic interactions between central ions. The compounds of Mn(II) and Co(II) are high spin complexes with weak ligand field. In Co(II) and Cu(II) complexes two carboxylate groups take part in the metal ion coordination while in those of Mn(II), Ni(II) and Zn(II) only one carboxylate anion coordinates to central ion.

1970 ◽  
Vol 42 (4) ◽  
pp. 475-482 ◽  
Author(s):  
M Badrul Islam ◽  
M Zahurul Haque ◽  
N Shamsul Islam

Certain complex compounds were synthesized by the interaction of Mg(II), Ca(II) and Fe(III) halides with the solvent extracting reagent, Cyanex-272 i.e. bis (2,4,4- trimethylpentyl) phosphinic acid as ligand. All the prepared complexes have been characterized on the basis of their molar masses, conductivity, magnetic measurements and infrared and electronic spectral studies. The other physico-chemical properties e.g. colour, decomposition temperature have also been ascertained. Key words: Chanex-272 Bangladesh J. Sci. Ind. Res. 42(4), 475-482, 2007


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6191
Author(s):  
Alexandra-Elisabeta Stamate ◽  
Rodica Zăvoianu ◽  
Octavian Dumitru Pavel ◽  
Ruxandra Birjega ◽  
Andreea Matei ◽  
...  

Mechanical activation and mechanochemical reactions are the subjects of mechanochemistry, a special branch of chemistry studied intensively since the 19th century. Herein, we comparably describe two synthesis methods used to obtain the following layered double hydroxide doped with cerium, Mg3Al0.75Ce0.25(OH)8(CO3)0.5·2H2O: the mechanochemical route and the co-precipitation method, respectively. The influence of the preparation method on the physico-chemical properties as determined by multiple techniques such as XRD, SEM, EDS, XPS, DRIFT, RAMAN, DR-UV-VIS, basicity, acidity, real/bulk densities, and BET measurements was also analyzed. The obtained samples, abbreviated HTCe-PP (prepared by co-precipitation) and HTCe-MC (prepared by mechanochemical method), and their corresponding mixed oxides, Ce-PP (resulting from HTCe-PP) and Ce-MC (resulting from HTCe-MC), were used as base catalysts in the self-condensation reaction of cyclohexanone and two Claisen–Schmidt condensations, which involve the reaction between an aromatic aldehyde and a ketone, at different molar ratios to synthesize compounds with significant biologic activity from the flavonoid family, namely chalcone (1,3-diphenyl-2-propen-1-one) and flavone (2-phenyl-4H-1benzoxiran-4-one). The mechanochemical route was shown to have indisputable advantages over the co-precipitation method for both the catalytic activity of the solids and the costs.


Author(s):  
Ali Ahmad ◽  
Muhammad Ahsan Asim ◽  
Muhammad Faisal Nadeem

Aim and Objective: Metal-organic network (MON) is a special class of molecular compounds comprising of groups or metal ion and carbon-based ligand. These chemical compounds are examined employing one, two- or threedimensional formation of porous ore and subfamilies of polymers. Metal-organic networks are frequently utilized in catalysis for the parting & distillation of different gases and by means of conducting solid or super-capacitor. In various scenarios, the compounds are observed balanced in the procedure of deletion or diluter of the molecule and can be rebuilt with another molecular compound. The physical solidity and mechanical characteristics of the metal-organic network have attained great attention due to the mention properties. This study was undertaken to find the polynomials of MON. Methods: Topological descriptor is a numerical number that is utilized to predict the natural correlation amongst the physico-chemical properties of the molecular structures in their elementary networks. Results: After partitioning the vertices based on their degrees, we calculate different degree-based topological polynomials for two distinct metal-organic networks with an escalating number of layers containing both metals and carbon-based ligand vertices. Conclusion: In the analysis of the metal-organic network, topological descriptors and their polynomials play an important part in modern chemistry. An analysis between the calculated various forms of the polynomials and topological descriptors through the numeric values and their graphs is also comprised.


1980 ◽  
Vol 33 (4) ◽  
pp. 729 ◽  
Author(s):  
M Palaniandavar ◽  
C Natarajan

Metal(II) complexes of the type ML2,nB [M = CuII, NiII, CoII; L = 2- hydroxy-5-X-crotonophenone where X = H, CH3, Cl; B = H2O, pyridine; n = 0, 1, 2] have been obtained and investigated. With the help of element analyses, magnetic measurements, ligand field and infrared spectra and thermal studies, the structure and the nature of bonding have been established. The anhydrous copper(II) chelates are monomeric and possess trans-square-planar configuration while the corresponding cobalt(II) and nickel(II) compounds are polymeric and possess high-spin trans-octahedral configuration. All the base adducts possess high-spin trans-octahedral structure with lesser tendency toward dissociation in solution. Infrared studies indicate that v(C=O) and v(M-O) are affected by metal ion and phenyl substitutions and adduct formation. The order of stabilities, namely Cu > Ni > Co, derived from v(M-O) parallels the crystal field stabilization energies. Substitution in the phenyl ring of the complexes produces shifts in v(M-O) which are related to the resonance capacities of the substituents. ��� The relatively high ligand field strength of o-hydroxycrotonophenone compared to salicylaldehyde is attributed to the conjugation of C=O with C=C which lowers the energy of the π3* orbital leading to extensive back-bonding with dπ orbitals of the metal.


2012 ◽  
Vol 9 (3) ◽  
pp. 1543-1549
Author(s):  
Eman Turky Shamkhy ◽  
Isam Hussain T. Al-Karkhi

A novel Schiff base 2-{(E)-[(2,4-dichlorophenyl)imino]methyl}phenol (LB) was synthesized from the condensation reaction of 2,4-dichloroaniline with salicyladehyde in [1:1] ratio in the presence of glacial acetic acid as catalyst. Complexation reaction of this Schiff base with copper (II), cobalt (II) as nitrate salts and with Rhodium (III) as chloride salt to produce three coordinate metal complexes, with a Schiff base: Metal ion ratio of 2:1. These compounds have been characterized by a variety of physico-chemical and spectroscopic techniques. The ligand and its metal complexes were expected to show an interesting bioactivity and cytotoxicity.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 277 ◽  
Author(s):  
Pavel Zoufalý ◽  
Erik Čižmár ◽  
Juraj Kuchár ◽  
Radovan Herchel

Two novel coordination compounds containing heterocyclic bidentate N,N-donor ligand 2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (fpo) were synthesized. A general formula for compounds originating from perchlorates of iron, cobalt, and fpo can be written as: [M(fpo)2(H2O)2](ClO4)2 (M = Fe(II) for (1) Co(II) for (2)). The characterization of compounds was performed by general physico-chemical methods—elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) in case of organics, and single crystal X-ray diffraction (sXRD). Moreover, magneto-chemical properties were studied employing measurements in static field (DC) for 1 and X-band EPR (Electron paramagnetic resonance), direct current (DC), and alternating current (AC) magnetic measurements in case of 2. The analysis of DC magnetic properties revealed a high spin arrangement in 1, significant rhombicity for both complexes, and large magnetic anisotropy in 2 (D = −21.2 cm−1). Moreover, 2 showed field-induced slow relaxation of the magnetization (Ueff = 65.3 K). EPR spectroscopy and ab initio calculations (CASSCF/NEVPT2) confirmed the presence of easy axis anisotropy and the importance of the second coordination sphere.


2018 ◽  
Vol 34 (1) ◽  
pp. 25
Author(s):  
Beata Cristóvão ◽  
Wieslawa Ferenc ◽  
J. Sarzyński ◽  
Halina Głuchowska

The physico-chemical properties of the new 3d-4f heteronuclear complexes with general formula LnCu3(C11H8N2O4Br)3·13H2O (where Ln = Pr, Eu, Gd, Tb, Er, Yb and H3(C11H8N2O4Br) – 5-bromosalicylideneglycylglycine) were studied. The compounds were characterized by elemental, spectral and thermal analyses and magnetic measurements. The formation of Schiff base is evidenced by a strong band at ca. 1646–1650 cm–1 attributable to C=N stretching mode. The presence of water molecules is confirmed by broad absorptions with maximum at 3360 – 3368 cm-1. The Cu(II)–Ln(III) complexes are stable up to ca. 318 K. During dehydration process the water molecules are lost probably in two stages. The magnetic susceptibility data for these complexes change with temperature according to the Curie-Weiss law.


2017 ◽  
Vol 10 (03) ◽  
pp. 1650052 ◽  
Author(s):  
Li-Hui Yin ◽  
Xu-Ping Liu ◽  
Lu-Yao Yi ◽  
Jin Wang ◽  
Ya-Jun Zhang ◽  
...  

Metal glycinate chelates are formed by glycine and metal compounds through chemical reactions. Calcium glycinate, magnesium glycinate and zinc glycinate are kinds of new-type and ideal nutrient supplements, which have satisfactory physico-chemical properties and bioactivities. They are important for prophylaxis and treat metal deficiency. The structural characterization shows that the metal ion is bonded to the amino and carboxyl group to form two five-membered rings. This paper mainly studies the structure characterization of the metal chelated glycinates by their solubility, infrared spectrum, thermal analysis, mass spectrometry, polycrystal diffraction, the metal contents and glycine contents of calcium glycinate, magnesium glycinate and zinc glycinate.


Sign in / Sign up

Export Citation Format

Share Document