Bridges Tested to Failure in Sweden

Author(s):  
Björn Täljsten ◽  
Thomas Blanksvärd ◽  
Gabriel Sas ◽  
Niklas Bagge ◽  
Jonny Nilimaa ◽  
...  

Five bridges of different types have been tested to failure and the results have been compared to analyses of the load-carrying capacity using standard code models and advanced numerical methods. The results may help to make accurate assessments of similar existing bridges. There it is necessary to know the real behaviour, weak points, and to be able to model the load-carrying capacity in a correct way.<p> The five bridges were: (1) a strengthened one span concrete road bridge - Stora Höga ; (2) a one span concrete rail trough bridge loaded in fatigue – Lautajokk; (3) a two span strengthened concrete trough railway bridge - Övik; (4) a one span railway steel truss bridge -Åby; and (5) a five span prestressed concrete road bridge - Kiruna. The unique results in the paper are the experiences of the real failure types, the robustness/weakness of the bridges, and the accuracy and shortcomings/potentials of different codes and models for safety assessment of existing structures.

1977 ◽  
Vol 4 (2) ◽  
pp. 214-225
Author(s):  
Baidar Bakht ◽  
Paul F. Csagoly

There are many thousands of existing pony truss bridges in North America which were constructed in the earlier part of this century and are still serving as important traffic carriers. The present economic situation demands that these bridges should usefully serve their purpose for as long as is safely possible.These bridges could be found inadequate for either or both of the following reasons. With the exception of remote areas, operational traffic safety would require two 12-ft lanes plus adequate shoulders. Many of these old bridges are therefore unsatisfactory from the geometrical point of view. Some bridges were designed for live loads that are only a fraction of present commercial vehicle weights.A computer-oriented method of rigorous analysis of lateral buckling behaviour of pony truss bridges is briefly discussed. The method is implemented through a computer program which has been validated by experimental data. It is expected that the program would predict realistic values of load-carrying capacity of such bridges and would help to avoid many an unnecessary replacement.Various methods of strengthening and widening pony truss bridges, and their pros and cons, are discussed. It is shown that the strengthening of a few components of a pony truss bridge does not always lead to an increase in the load-carrying capacity of the bridge.


2016 ◽  
Vol 12 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Josef Vičan ◽  
Jozef Gocál ◽  
Jaroslav Odrobiňák ◽  
Peter Koteš

Abstract The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.


2015 ◽  
Vol 5 (2) ◽  
pp. 94-99
Author(s):  
Nikolay Alekseevich ILYIN ◽  
Sergei Valer'evich STEPANOV ◽  
Denis Aleksandrovich PANFILOV ◽  
Denis Vladimirovich LITVINOV

A new resource effi cient solution for damaged stone walls support structure of a building is proposed in the article. This design solution is developed in construction fi eld and can be applied for the repair, strengthening and reconstruction of buildings and structures, and more particularly it is can be used to correct sever damages and to ensure the spatial rigidity of stone walls of a building. Stone walls of building are strengthened by beam tensible band containing longitudinal and transverse bars in the form of steel joists and a device for their articulation and tension, which consists of an anchor cleat and att achement screws with tension nuts. The support device is elaborated taking into account spatial rigidity and load-carrying capacity of existing structures without their dismantling. Positive technical results are obtained due to increased operational reliability and walls spatial rigidity.


Author(s):  
Xiandong Liao ◽  
Xiang Hu

The seismic performance of the internal connection of precast prestressed concrete frame was studied systematically, based on the experiment of full-scale model under low cyclic reversed loading. This study was mainly focused on failure pattern, load-carrying capacity, skeleton curves, and hysteresis curves. Furthermore, a nonlinear finite element analysis using Abaqus was carried out to study the characteristics of the internal connection of precast prestressed concrete frame. Results revealed that the damage was concentrated mainly on beam end owing to flexural action, while steel bars in the columns and stirrups in the core region remained elastic until failure occurred. The calculated value of the load-carrying capacity of the internal connection was similar to the experimental one. Present study can be referenced for the application of precast prestressed concrete frame in high seismic zones.


2019 ◽  
Vol 26 (2) ◽  
pp. 47-54 ◽  
Author(s):  
Krzysztof Woloszyk ◽  
Yordan Garbatov

Abstract This work deals with the reliability assessment of a tanker ship hull structure subjected to a vertical bending moment and corrosion degradation. The progressive collapse and ultimate load carrying capacity are estimated based on experimentally tested scaled box-shaped-specimens. The translation of the strength estimate of the scaled specimen to the real tanker ship hull structure is performed based on the dimensional theory developing a step-wise linear stress-strain relationship. The load-carrying capacity is considered as a stochastic variable, and the uncertainties resulted from the scaled-specimen to the real-structure strength translation, and the subjected load of the real ship are also accounted for. A sensitivity analysis concerning the stochastic variables, included in the ultimate limit state function is performed. The partial safety factors, in the case of a scaled specimen and real structure, are also identified, and conclusions are derived.


1994 ◽  
pp. 83-92
Author(s):  
Yoshimi Sonoda ◽  
Nobutaka Ishikawa ◽  
Keiichiro Sonoda ◽  
Toshiaki Ohta

Sign in / Sign up

Export Citation Format

Share Document