scholarly journals Experimental and Numerical Study of Seismic Performance of Precast Prestressed Concrete Frame Internal Connection

Author(s):  
Xiandong Liao ◽  
Xiang Hu

The seismic performance of the internal connection of precast prestressed concrete frame was studied systematically, based on the experiment of full-scale model under low cyclic reversed loading. This study was mainly focused on failure pattern, load-carrying capacity, skeleton curves, and hysteresis curves. Furthermore, a nonlinear finite element analysis using Abaqus was carried out to study the characteristics of the internal connection of precast prestressed concrete frame. Results revealed that the damage was concentrated mainly on beam end owing to flexural action, while steel bars in the columns and stirrups in the core region remained elastic until failure occurred. The calculated value of the load-carrying capacity of the internal connection was similar to the experimental one. Present study can be referenced for the application of precast prestressed concrete frame in high seismic zones.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1704 ◽  
Author(s):  
Ramon Silva ◽  
Welington V. Silva ◽  
Jonas Yamashita de Farias ◽  
Marcos Aires A. Santos ◽  
Leonardo O. Neiva

This paper carries out the assessment of load-carrying capacity of prestressed concrete sleepers, in accordance with Brazilian Standard (ABNT NBR 11709) and AREMA Standard. In a lot of railways around the world, many prestressed concrete sleepers have failed due to Rail Seat Abrasion (RSA) and corrosion. RSA is the wear degradation underneath the rail on the surface of prestressed concrete sleepers. In this paper, a numerical study was carried out to evaluate the load-carrying capacity of the prestressed concrete sleepers, using ABAQUS software. The nonlinear using Concrete Damage Plasticity model was validated by 18 experimental results, in accordance to standards. Using the validated model, the influence of different wear depth RSA, combined with corrosion of the prestressed wires, is investigated.


2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


2018 ◽  
Vol 8 (10) ◽  
pp. 1871 ◽  
Author(s):  
Xueyuan Yan ◽  
Suguo Wang ◽  
Canling Huang ◽  
Ai Qi ◽  
Chao Hong

Precast monolithic structures are increasingly applied in construction. Such a structure has a performance somewhere between that of a pure precast structure and that of a cast-in-place structure. A precast concrete frame structure is one of the most common prefabricated structural systems. The post-pouring joint is important for controlling the seismic performance of the entire precast monolithic frame structure. This paper investigated the joints of a precast prestressed concrete frame structure. A reversed cyclic loading test was carried out on two precast prestressed concrete beam–column joints that were fabricated with two different concrete strengths in the keyway area. This testing was also performed on a cast-in-place reinforced concrete joint for comparison. The phenomena such as joint crack development, yielding, and ultimate damage were observed, and the seismic performance of the proposed precast prestressed concrete joint was determined. The results showed that the precast prestressed concrete joint and the cast-in-place joint had a similar failure mode. The stiffness, bearing capacity, ductility, and energy dissipation were comparable. The hysteresis curves were full and showed that the joints had good energy dissipation. The presence of prestressing tendons limited the development of cracks in the precast beams. The concrete strength of the keyway area had little effect on the seismic performance of the precast prestressed concrete joints. The precast prestressed concrete joints had a seismic performance that was comparable to the equivalent monolithic system.


Author(s):  
Sanjay Sharma ◽  
Aniket Sharma ◽  
Gourav Jamwal ◽  
Rajeev Kumar Awasthi

The present comparative numerical study is between V-shape protruded, dimple textured, and untextured bearing. The performance parameters in terms of the load-carrying capacity and coefficient of friction are computed by solving governing Reynold’s equation of the lubricant fluid flow. The governing equation is solved by the finite element method by assuming that the fluid is Newtonian and isoviscous in nature. The effect of eccentricity ratios, texture distribution, texture heights, and texture depths are considered for the analysis in both textured bearings. From simulated results, the load-carrying capacity and coefficient of friction is found to be maximum for protruded textured bearing in full textured region and first half-textured region respectively as compared to untextured bearings. Finally, optimal operating and geometrical parameters of textured bearing is obtained by computing performance enhancement ratio, which is the ratio of the load-carrying capacity to the coefficient of friction. The maximum value of the performance enhancement ratio is found for protruded and dimple textured bearing in full texturing and second half-region corresponding to the eccentricity ratio of 0.8 and 0.6 respectively at texture height and depth of 0.4.


2013 ◽  
Vol 438-439 ◽  
pp. 706-710
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Shear wall with concrete filled steel tube columns and concealed trusses is a new kind of shear wall. In order to further the seismic performance of the new shear wall, experiment was carried on three 1/5 scale models, which included one traditional RC shear wall, one shear wall with concrete filled steel tube columns, one shear wall with concrete filled steel tube columns and concealed trusses. Based on the experimental study, load-carrying capacity and hysteretic property of each model were analyzed. The study show that the seismic performance of shear wall with concrete filled round steel tube columns and concealed steel trusses has high bearing capacity and good hysteretic property. Load carrying capacity calculation of shear wall with concrete filled steel tube columns and concealed steel trusses were carried out, the calculate results were in good agreement with the measured results.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Fangyuan Li ◽  
Wenhao Li ◽  
Shaohui Lu ◽  
Yin Shen

For prestressed carbon fiber reinforced polymer (CFRP) tendon anchorage systems to become well established and used on a large scale, practical requirements for structure strengthening may be met by performing a relatively easy anchorage technique using prestressing CFRP laminates. From testing performed on a clip-type CFRP laminate anchorage system developed in our research group, it was revealed that this system could achieve the anchorage efficiency and the relaxation met the requirement of specification. Furthermore, the relevant indices of the anchorage system met the prestressed system standards. A test on the load-carrying capacity of a full-scale model beam demonstrated that the load-carrying capacity of the beam increased by more than 60% after it was strengthened with the anchorage system. The prestressing CFRP laminates and the bridge structure deformed and bore stress as a composite and exhibited excellent operating performance when working together.


1994 ◽  
pp. 83-92
Author(s):  
Yoshimi Sonoda ◽  
Nobutaka Ishikawa ◽  
Keiichiro Sonoda ◽  
Toshiaki Ohta

Sign in / Sign up

Export Citation Format

Share Document