SHM system vs. FEM model – comparison between measured and calculated data of a cable-stayed bridge

Author(s):  
Jan Biliszczuk ◽  
Paweł Hawryszków ◽  
Marco Teichgraeber
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1927
Author(s):  
Jan Biliszczuk ◽  
Paweł Hawryszków ◽  
Marco Teichgraeber

The Rędziński Bridge in Wrocław is the biggest Polish concrete cable-stayed bridge. It is equipped with a large structural health monitoring (SHM) system which has been collecting the measured data since the bridge opening in the year 2011. This paper presents a comparison between the measured data and the finite element method (FEM) calculations, while taking into account 7 years of data collection and analyses. The first part of this paper concerns the SHM application. In the next part, which contains comparisons between forces in cables and temperature changes throughout the structure, the measured data are presented. The third part includes SHM-based calculations and simulations with a complex FEM model to check the measured data and to estimate future measurements. The last part contains a durability assessment calculation for the cable stays.


Author(s):  
Jan Biliszczuk ◽  
Paweł Hawryszków ◽  
Marco Teichgraeber

<p>Over the last 20 years big bridges in Poland have been built and equipped in Structural Health Monitoring systems (SHM). One of those objects is the Rędziński Bridge in Wrocław. It is a cable-stayed concrete bridge built along the motorway A8 in 2011. Since this time the SHM has been collecting data from 222 installed sensors. The bridge is outstanding because of its unusual structure: two separate concert box girders are suspended to a single pylon. The connection is made of 160 stay cables – so this is also the most sensitive part of the structure.</p><p>The first part of the paper concerns the SHM application. In the next part the measured data form the period 2011-2017 are presented, containing comparisons between forces in cables and temperature changes in the whole structure. The third part will include SHM based calculations and simulations with a complex FEM model, to check the measured data and to estimate future measurements. The last part contains the durability assessment calculation for the cable stays.</p>


2011 ◽  
Vol 295-297 ◽  
pp. 1230-1235
Author(s):  
Jiang Bo Sun ◽  
Zuo Zhou Zhao ◽  
Hong Hua Zhao

This paper presents several methods usually used for measuring cable tension in cable-stayed bridges, especially frequency vibration method. Taken two different length stay-cables under given tension forces in a real cable-stayed bridge as an example, different modeling methods in finite element methods (FEM) were used to solve their natural vibration frequencies. The results by FEM were compared with those from other available theoretical predicting method. It was found that FEM based on tightening string model is more suitable for a long stay-cable. For a short stay-cable under given tension force, beam bending stiffness can be ignored in predicting its first five natural frequencies using a hinged beam model in FEM. While the predicted lower frequency using clamped beam FEM model is more accurate and reasonable.


Author(s):  
Youssef Baba ◽  
Mostafa Bouzi

n this paper, a study on modeling of a piezoelectric transducer type rotary traveling wave ultrasonic motor (USM) is presented. First a mathematical model and numerical simulation results are achieved. The model is based on the theory of piezoelectricity and physic theory. An experimental model is worked out and compared to the numerical model. The influence of the temperature on characteristics such as the rotational speed of the motor is considered. The speed of the USM is measured at temperature between 17°Cand 50°C. To develop suitable control strategies for the drive, a fuzzy model type Takagi-Sugeno is used. The unknown parameters of the output membership functions are determined by least square method. Experimental data are used to examine the validity of the fuzzy model. Comparison between experimental and calculated data of the fuzzy model indicates that the fuzzy model can well describe the nonlinear characteristics among the frequency of driving voltage and rotating speed.


Author(s):  
A Mariak ◽  
M Miśkiewicz ◽  
B Meronk ◽  
Ł Pyrzowski ◽  
K Wilde

2018 ◽  
Vol 41 ◽  
Author(s):  
Wei Ji Ma

AbstractGiven the many types of suboptimality in perception, I ask how one should test for multiple forms of suboptimality at the same time – or, more generally, how one should compare process models that can differ in any or all of the multiple components. In analogy to factorial experimental design, I advocate for factorial model comparison.


2014 ◽  
Vol 10 (1) ◽  
pp. 1-15
Author(s):  
Z. Láng

The possible effect of shaker harvest on root damage of 10-year-old cherry trees was studied on a simple tree structure model. The model was composed of elastic trunk and rigid main roots, the ends of which were connected to the surrounding soil via springs and dumping elements. Equations were set up to be able to calculate the relation between shaking height on the trunk and strain in the roots. To get the data for root break and their elongation at different shaking heights on the trunk, laboratory and field experiments were carried out on cherry trees and on their roots. Having evaluated the measured and calculated data it could be concluded that root damage is to be expected even at 3.6% strain and the risk of it increases with increased trunk amplitudes, i.e.with the decrease of shaking heightat smaller stem diameters (i.e. in younger plantation), andif the unbalanced mass of the shaker machine is too large for the given tree size.


Sign in / Sign up

Export Citation Format

Share Document