scholarly journals High specificity of a novel Zika virus ELISA in European patients after exposure to different flaviviruses

2016 ◽  
Vol 21 (16) ◽  
Author(s):  
Daniela Huzly ◽  
Ingeborg Hanselmann ◽  
Jonas Schmidt-Chanasit ◽  
Marcus Panning

The current Zika virus (ZIKV) epidemic in the Americas caused an increase in diagnostic requests in European countries. Here we demonstrate high specificity of the Euroimmun anti-ZIKV IgG and IgM ELISA tests using putative cross-reacting sera of European patients with antibodies against tick-borne encephalitis virus, dengue virus, yellow fever virus and hepatitis C virus. This test may aid in counselling European travellers returning from regions where ZIKV is endemic.

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 596
Author(s):  
Karin Stiasny ◽  
Stefan Malafa ◽  
Stephan W. Aberle ◽  
Iris Medits ◽  
Georgios Tsouchnikas ◽  
...  

Flaviviruses circulate worldwide and cause a number of medically relevant human diseases, such as dengue, Zika, yellow fever, and tick-borne encephalitis (TBE). Serology plays an important role in the diagnosis of flavivirus infections, but can be impeded by antigenic cross-reactivities among flaviviruses. Therefore, serological diagnosis of a recent infection can be insufficiently specific, especially in areas where flaviviruses co-circulate and/or vaccination coverage against certain flaviviruses is high. In this study, we developed a new IgM assay format, which is well suited for the specific diagnosis of TBE, Zika and dengue virus infections. In the case of TBE and Zika, the IgM response proved to be highly specific for the infecting virus. In contrast, primary dengue virus infections induced substantial amounts of cross-reactive IgM antibodies, which is most likely explained by structural peculiarities of dengue virus particles. Despite the presence of cross-reactive IgM, the standardized nature and the quantitative read-out of the assay even allowed the serotype-specific diagnosis of recent dengue virus infections in most instances.


2019 ◽  
Vol 268 ◽  
pp. 53-55 ◽  
Author(s):  
José A. Boga ◽  
Marta E. Alvarez-Arguelles ◽  
Susana Rojo-Alba ◽  
Mercedes Rodríguez ◽  
María de Oña ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
James Duehr ◽  
Silviana Lee ◽  
Gursewak Singh ◽  
Gregory A. Foster ◽  
David Krysztof ◽  
...  

ABSTRACT Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro. A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2−/− mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the possibility of ADE in cells exposed to anti-DENV human plasma and then infected with ZIKV and also in mouse models of ZIKV pathogenesis after passive transfer of anti-DENV human plasma. In this study, we evaluated the extent to which this phenomenon occurs using sera from individuals immunized against tick-borne encephalitis virus (TBEV). This is highly relevant, since large proportions of the European population are vaccinated against TBEV or otherwise seropositive.


2020 ◽  
Vol 65 (1) ◽  
pp. 21-26 ◽  
Author(s):  
A. P. Ivanov ◽  
T. D. Klebleeva ◽  
O. E. Ivanova

Introduction. The well-known advantages of class Y antibodies (IgY) from egg yolks of immunized hens in comparison with class G antibodies (IgG) of laboratory animals traditionally used in laboratory diagnosis of infectious diseases determine the stable interest of researchers in using IgY for these purposes (IgY technology) . Over the past 20 years, the obvious benefits of IgY technology have been demonstrated for a number of viral and bacterial infections. Goals and objectives. Construction of ELISA systems based on specific IgY for laboratory diagnosis of infections caused by tick-borne encephalitis virus, yellow fever virus, poliovirus.Material and methods. Obtaining yolk preparations of immunized chickens, obtaining highly purified IgY preparations (salting out, affinity chromatography), constructing ELISA systems for determining virus-specific antigens, testing the parameters of ELISA systems.Results and discussion. For the first time in laboratory practice, ELISA systems based on the use of specific polyclonal IgY were designed for laboratory diagnosis of topical human viral infections caused by flaviviruses and enteroviruses: determination of antigens of tick-borne encephalitis virus, yellow fever virus, 3 types of poliovirus. It was experimentally shown that these ELISA systems have high sensitivity and specificity, which allows them to be used for the semiquantitative and quantitative determination of antigens of these viruses in various materials (infected cell cultures, vaccines, etc.).Conclusion. The ELISA systems developed on the basis of specific IgY for determination of viral antigens can be effectively used for laboratory diagnosis of a number of viral infections, for the validation and control of vaccine preparations.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
M. J. Schultz ◽  
A. L. Tan ◽  
C. N. Gray ◽  
S. Isern ◽  
S. F. Michael ◽  
...  

ABSTRACTMosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacteriumWolbachia pipientisfrom supergroup A is a recent strategy employed to reduce the capacity for major vectors in theAedesmosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup BWolbachia wStri, isolated fromLaodelphax striatellus, was shown to inhibit multiple lineages of ZIKV inAedes albopictuscells. Here, we show thatwStri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%.wStri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited bywStri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry intowStri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate inWolbachia-infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis inwStri-infected cells. This study’s findings increase the potential for application ofwStri to block additional arboviruses and also identify specific blocks in viral infection caused byWolbachiacoinfection.IMPORTANCEDengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont,Wolbachia wStri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use ofWolbachia wStri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy.


2003 ◽  
Vol 47 (7) ◽  
pp. 2293-2298 ◽  
Author(s):  
Victor E. Buckwold ◽  
Jiayi Wei ◽  
Michelle Wenzel-Mathers ◽  
Julie Russell

ABSTRACT Monotherapy of hepatitis C virus infection with either alpha interferon or ribavirin alone is rather ineffective, while the use of the two antivirals together is much more efficacious. In vitro drug-drug combination analysis utilizing related members of the family Flaviviridae, bovine viral diarrhea virus and yellow fever virus, revealed significant direct synergistic interactions between these drugs' antiviral activities that might explain this clinical observation.


2017 ◽  
Vol 216 (9) ◽  
pp. 1164-1175 ◽  
Author(s):  
James H McLinden ◽  
Nirjal Bhattarai ◽  
Jack T Stapleton ◽  
Qing Chang ◽  
Thomas M Kaufman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document