scholarly journals Moving epidemic method (MEM) applied to virology data as a novel real time tool to predict peak in seasonal influenza healthcare utilisation. The Scottish experience of the 2017/18 season to date

2018 ◽  
Vol 23 (11) ◽  
Author(s):  
Josephine L K Murray ◽  
Diogo F P Marques ◽  
Ross L Cameron ◽  
Alison Potts ◽  
Jennifer Bishop ◽  
...  

Scotland observed an unusual influenza A(H3N2)-dominated 2017/18 influenza season with healthcare services under significant pressure. We report the application of the moving epidemic method (MEM) to virology data as a tool to predict the influenza peak activity period and peak week of swab positivity in the current season. This novel MEM application has been successful locally and is believed to be of potential use to other countries for healthcare planning and building wider community resilience.

Author(s):  
Fabiola Mancini ◽  
Fabrizio Barbanti ◽  
Maria Scaturro ◽  
Stefano Fontana ◽  
Angela Di Martino ◽  
...  

Abstract Background Pandemic coronavirus disease 2019 (COVID-19) disease represents a challenge for healthcare structures. The molecular confirmation of samples from infected individuals is crucial and therefore guides public health decision making. Clusters and possibly increased diffuse transmission could occur in the context of the next influenza season. For this reason, a diagnostic test able to discriminate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from influenza viruses is urgently needed. Methods A multiplex real-time reverse-transcription polymerase chain reaction (PCR) assay was assessed using 1 laboratory protocol with different real-time PCR instruments. Overall, 1000 clinical samples (600 from samples SARS-CoV-2–infected patients, 200 samples from influenza-infected patients, and 200 negative samples) were analyzed. Results The assay developed was able to detect and discriminate each virus target and to intercept coinfections. The limit of quantification of each assay ranged between 5 and 10 genomic copy numbers, with a cutoff value of 37.7 and 37.8 for influenza and SARS-CoV-2 viruses, respectively. Only 2 influenza coinfections were detected in COVID-19 samples. Conclusions This study suggests that multiplex assay is a rapid, valid, and accurate method for the detection of SARS-CoV-2 and influenza viruses in clinical samples. The test may be an important diagnostic tool for both diagnostic and surveillance purposes during the seasonal influenza activity period.


2014 ◽  
Vol 2014 ◽  
pp. 1-3
Author(s):  
Adriano Peris ◽  
Giovanni Zagli ◽  
Pasquale Bernardo ◽  
Massimo Bonacchi ◽  
Morena Cozzolino ◽  
...  

Pandemic influenza virus A(H1N1) 2009 was associated with a higher risk of viral pneumonia in comparison with seasonal influenza viruses. The influenza season 2011-2012 was characterized by the prevalent circulation of influenza A(H3N2) viruses. Whereas most H3N2 patients experienced mild, self-limited influenza-like illness, some patients were at increased risk for influenza complications because of age or underlying medical conditions. Cases presented were patients admitted to the Intensive Care Unit (ICU) of ECMO referral center (Careggi Teaching Hospital, Florence, Italy). Despite extracorporeal membrane oxygenation treatment (ECMO), one patient with H3N2-induced ARDS did not survive. Our experience suggests that viral aetiology is becoming more important and hospitals should be able to perform a fast differential diagnosis between bacterial and viral aetiology.


2009 ◽  
Vol 14 (32) ◽  
Author(s):  
H Uphoff ◽  
S Geis ◽  
A Grüber ◽  
A M Hauri

For the next influenza season (winter 2009-10) the relative contributions to virus circulation and influenza-associated morbidity of the seasonal influenza viruses A(H3N2), A(H1N1) and B, and the new influenza A(H1N1)v are still unknown. We estimated the chances of seasonal influenza to circulate during the upcoming season using data of the German influenza sentinel scheme from 1992 to 2009. We calculated type and subtype-specific indices for past exposure and the corresponding morbidity indices for each season. For the upcoming season 2009-10 our model suggests that it is unlikely that influenza A(H3N2) will circulate with more than a low intensity, seasonal A(H1N1) with more than a low to moderate intensity, and influenza B with more than a low to median intensity. The probability of a competitive circulation of seasonal influenza A with the new A(H1N1)v is low, increasing the chance for the latter to dominate the next influenza season in Germany.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Tahmina Nasserie ◽  
Ashleigh R Tuite ◽  
Lindsay Whitmore ◽  
Todd Hatchette ◽  
Steven J Drews ◽  
...  

AbstractBackgroundSeasonal influenza epidemics occur frequently. Rapid characterization of seasonal dynamics and forecasting of epidemic peaks and final sizes could help support real-time decision-making related to vaccination and other control measures. Real-time forecasting remains challenging.MethodsWe used the previously described “incidence decay with exponential adjustment” (IDEA) model, a 2-parameter phenomenological model, to evaluate the characteristics of the 2015–2016 influenza season in 4 Canadian jurisdictions: the Provinces of Alberta, Nova Scotia and Ontario, and the City of Ottawa. Model fits were updated weekly with receipt of incident virologically confirmed case counts. Best-fit models were used to project seasonal influenza peaks and epidemic final sizes.ResultsThe 2015–2016 influenza season was mild and late-peaking. Parameter estimates generated through fitting were consistent in the 2 largest jurisdictions (Ontario and Alberta) and with pooled data including Nova Scotia counts (R0 approximately 1.4 for all fits). Lower R0 estimates were generated in Nova Scotia and Ottawa. Final size projections that made use of complete time series were accurate to within 6% of true final sizes, but final size was using pre-peak data. Projections of epidemic peaks stabilized before the true epidemic peak, but these were persistently early (~2 weeks) relative to the true peak.ConclusionsA simple, 2-parameter influenza model provided reasonably accurate real-time projections of influenza seasonal dynamics in an atypically late, mild influenza season. Challenges are similar to those seen with more complex forecasting methodologies. Future work includes identification of seasonal characteristics associated with variability in model performance.


2020 ◽  
Vol 16 (11) ◽  
pp. e1008984
Author(s):  
Nicola F. Müller ◽  
Daniel Wüthrich ◽  
Nina Goldman ◽  
Nadine Sailer ◽  
Claudia Saalfrank ◽  
...  

Infecting large portions of the global population, seasonal influenza is a major burden on societies around the globe. While the global source sink dynamics of the different seasonal influenza viruses have been studied intensively, its local spread remains less clear. In order to improve our understanding of how influenza is transmitted on a city scale, we collected an extremely densely sampled set of influenza sequences alongside patient metadata. To do so, we sequenced influenza viruses isolated from patients of two different hospitals, as well as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The genetic sequences reveal that repeated introductions into the city drove the influenza season. We then reconstruct how the effective reproduction number changed over the course of the season. While we did not find that transmission dynamics in Basel correlate with humidity or school closures, we did find some evidence that it may positively correlated with temperature. Alongside the genetic sequence data that allows us to see how individual cases are connected, we gathered patient information, such as the age or household status. Zooming into the local transmission outbreaks suggests that the elderly were to a large extent infected within their own transmission network. In the remaining transmission network, our analyses suggest that school-aged children likely play a more central role than pre-school aged children. These patterns will be valuable to plan interventions combating the spread of respiratory diseases within cities given that similar patterns are observed for other influenza seasons and cities.


Sign in / Sign up

Export Citation Format

Share Document