scholarly journals Current practices for respiratory syncytial virus surveillance across the EU/EEA Member States, 2017

2019 ◽  
Vol 24 (40) ◽  
Author(s):  
Madelief Mollers ◽  
Céline Barnadas ◽  
Eeva K Broberg ◽  
Pasi Penttinen ◽  
Anne C Teirlinck ◽  
...  

Background Respiratory syncytial virus (RSV) is a major contributor to lower respiratory tract infections worldwide and several vaccine candidates are currently in development. Following vaccine introduction, reliable RSV surveillance should enable monitoring of vaccination impact. Data on the RSV disease burden in the European Union and European Economic Area (EU/EEA) are sparse. Aim The aim of this study was to gather knowledge on current practices of national RSV surveillance in the EU/EEA. Methods National Coordinators and National Focal Points for Influenza (epidemiologists and virologists) from the EU/EEA countries (n = 31) were invited to participate in an online survey in August and September 2017. The questionnaire covered questions on epidemiological and laboratory aspects of RSV surveillance. Results All EU/EEA countries except Liechtenstein replied to the survey. Eighteen countries reported to have a sentinel surveillance system, 26 countries a non-sentinel surveillance system and three countries to have neither. RSV data collection was mostly done within the context of influenza surveillance. A wide range of diagnostic and characterisation assays was used for the detection of RSV. Discussion The majority of EU/EEA countries have some surveillance for RSV in place. The prevailing integration of RSV surveillance into the existing influenza sentinel surveillance system may lead to under-reporting of RSV. The documented variations in existing RSV surveillance systems and their outputs indicate that there is scope for developing guidelines on establishing comparable methods and outcomes for RSV surveillance across the EU/EEA, to ensure the availability of a consistent evidence base for assessing future vaccination programmes.

2009 ◽  
Vol 14 (40) ◽  
Author(s):  
T J Meerhoff ◽  
A Mosnier ◽  
F Schellevis ◽  
W J Paget ◽  
the EISS RSV Task Group

Respiratory syncytial virus (RSV) surveillance is important to get insight into the burden of disease and epidemic pattern of RSV infection. This information is useful for healthcare resource allocation as well as the timing of preventive messages and palivizumab prophylaxis. For influenza surveillance the European Influenza Surveillance Scheme (EISS) was established in 1996, but no surveillance platform is available for RSV. To improve surveillance an RSV Task Group was established in 2003 and recommendations for RSV surveillance were developed. By 2008, progress was made for four out of six recommendations: the number of European countries testing specimens for RSV increased from six to fourteen; nose and/or throat swabs were generally used for detection of influenza and RSV; a total of 25 laboratories performed molecular testing for diagnosis and participated in a quality control assessment for RSV with an overall good performance; four of the ten countries that joined EISS in 2004 started reporting RSV detections in addition to influenza in the period 2004-8. Limited progress was achieved for standardising methods and the development of a sentinel surveillance system of representative hospitals. Improving RSV surveillance is possible by further harmonising the data collection and increased reporting of RSV.


2018 ◽  
Vol 23 (5) ◽  
Author(s):  
Eeva K Broberg ◽  
Matti Waris ◽  
Kari Johansen ◽  
René Snacken ◽  
Pasi Penttinen ◽  
...  

Respiratory syncytial virus (RSV) is considered the most common pathogen causing severe lower respiratory tract infections among infants and young children. We describe the seasonality and geographical spread of RSV infection in 15 countries of the European Union and European Economic Area. We performed a retrospective descriptive study of weekly laboratory-confirmed RSV detections between weeks 40/2010 and 20/2016, in patients investigated for influenza-like illness, acute respiratory infection or following the clinician’s judgment. Six countries reported 4,230 sentinel RSV laboratory diagnoses from primary care and 14 countries reported 156,188 non-sentinel laboratory diagnoses from primary care or hospitals. The median length of the RSV season based on sentinel and non-sentinel surveillance was 16 (range: 9–24) and 18 (range: 8–24) weeks, respectively. The median peak weeks for sentinel and non-sentinel detections were week 4 (range: 48 to 11) and week 4.5 (range: 49 to 17), respectively. RSV detections peaked later (r = 0.56; p = 0.0360) and seasons lasted longer with increasing latitude (r = 0.57; p = 0.0329). Our data demonstrated regular seasonality with moderate correlation between timing of the epidemic and increasing latitude of the country. This study supports the use of RSV diagnostics within influenza or other surveillance systems to monitor RSV seasonality and geographical spread.


BMJ ◽  
2019 ◽  
pp. l5021 ◽  
Author(s):  
Hannah H Nam ◽  
Michael G Ison

ABSTRACT Human respiratory syncytial virus (RSV) belongs to the recently defined Pneumoviridae family, Orthopneumovirus genus. It is a negative sense, single stranded RNA virus that results in epidemics of respiratory infections that typically peak in the winter in temperate climates and during the rainy season in tropical climates. Generally, one of the two genotypes (A and B) predominates in a single season, alternating annually, although regional variation occurs. RSV is a cause of disease and death in children, older people, and immunocompromised patients, and its clinical effect on adults admitted to hospital is clarified with expanded use of multiplex molecular assays. Among adults, RSV produces a wide range of clinical symptoms including upper respiratory tract infections, severe lower respiratory tract infections, and exacerbations of underlying disease. Here we discuss the latest evidence on the burden of RSV related disease in adults, especially in those with immunocompromise or other comorbidities. We review current therapeutic and prevention options, as well as those in development.


2021 ◽  
Vol 42 (06) ◽  
pp. 788-799
Author(s):  
Hannah H. Nam ◽  
Michael G. Ison

AbstractHuman respiratory syncytial virus (RSV) is a negative sense single-stranded RNA virus that can result in epidemics of seasonal respiratory infections. Generally, one of the two genotypes (A and B) predominates in a single season and alternate annually with regional variation. RSV is a known cause of disease and death at both extremes of ages in the pediatric and elderly, as well as immunocompromised populations. The clinical impact of RSV on the hospitalized adults has been recently clarified with the expanded use of multiplex molecular assays. Among adults, RSV can produce a wide range of clinical symptoms due to upper respiratory tract infections potentially leading to severe lower respiratory tract infections, as well as exacerbations of underlying cardiac and lung diseases. While supportive care is the mainstay of therapy, there are currently multiple therapeutic and preventative options under development.


2019 ◽  
Vol 64 (2) ◽  
pp. 90-96
Author(s):  
A. A. Kushch ◽  
R. R. Klimova ◽  
N. E. Fedorova ◽  
O. V. Masalova ◽  
A. A. Niconova ◽  
...  

Introduction. Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infections in infants and the elderly. The absence of a wide range of therapeutic drugs and vaccines indicates to the high relevance of the development of new effective drugs for the prevention and treatment of RSV infections. Purpose: to obtain highly active and specific monoclonal antibodies (MAbs) capable of detecting RSV in infected cells and neutralizing the infectious activity of the virus in vitro. Material and methods. RSV reference strains of group A 2 subgroups (A2 and Long) were propagated in HEp-2 and MA-104 cell lines, respectively. Mice were immunized with purified RSV A2 virus. MAbs were obtained using hybridoma technology. Results. A panel of 6 MAbs reacting with RSV strains А2 and Long has been obtained. Four MAbs were IgG (IgG2a or IgG2b subtype), two MAbs were IgM. All MAbs reacted with RSV F-protein in immunochemical tests. The MAbs actively reacted with RSV in ELISA, in immufluorescence and peroxidase staining of infected cells, and in immunodot test. Five out of 6 MAbs neutralized of RSV in cell culture. Different properties of MAbs suggest that they target different antigenic sites of F-protein. Discussion. Comparative analysis suggests that the obtained MAbs can be used for the development of diagnostic preparations, for RSV detection in clinical materials and confirmation of infection etiology by rapid culture method. Conclusion. High activity and specificity of MAbs indicate that they can serve as a basis for development vaccines and preventive medicines.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rafik Dey ◽  
Melanie A. Folkins ◽  
Nicholas J. Ashbolt

AbstractHuman respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in children and immunocompromised adults worldwide. Here we report that amoebae-release respirable-sized vesicles containing high concentrations of infectious RSV that persisted for the duration of the experiment. Given the ubiquity of amoebae in moist environments, our results suggest that extracellular amoebal-vesicles could contribute to the environmental persistence of respiratory viruses, including potential resistance to disinfection processes and thereby offering novel pathways for viral dissemination and transmission.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Laura M. Stephens ◽  
Steven M. Varga

Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.


2021 ◽  
Vol 9 (6) ◽  
pp. 1293
Author(s):  
Gaspar A. Pacheco ◽  
Nicolás M. S. Gálvez ◽  
Jorge A. Soto ◽  
Catalina A. Andrade ◽  
Alexis M. Kalergis

The human respiratory syncytial virus (hRSV) is one of the leading causes of acute lower respiratory tract infections in children under five years old. Notably, hRSV infections can give way to pneumonia and predispose to other respiratory complications later in life, such as asthma. Even though the social and economic burden associated with hRSV infections is tremendous, there are no approved vaccines to date to prevent the disease caused by this pathogen. Recently, coinfections and superinfections have turned into an active field of study, and interactions between many viral and bacterial pathogens have been studied. hRSV is not an exception since polymicrobial infections involving this virus are common, especially when illness has evolved into pneumonia. Here, we review the epidemiology and recent findings regarding the main polymicrobial infections involving hRSV and several prevalent bacterial and viral respiratory pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, human rhinoviruses, influenza A virus, human metapneumovirus, and human parainfluenza viruses. As reports of most polymicrobial infections involving hRSV lack a molecular basis explaining the interaction between hRSV and these pathogens, we believe this review article can serve as a starting point to interesting and very much needed research in this area.


Sign in / Sign up

Export Citation Format

Share Document