Bats as the reservoir for outbreaks of emerging infectious diseases

2005 ◽  
Vol 10 (45) ◽  
Author(s):  
C J Williams

A study from China has provided evidence that bats may be the natural reservoir for severe acute respiratory syndrome coronavirus (SARS-CoV)

2021 ◽  
Vol 18 (10) ◽  
pp. 2313-2324 ◽  
Author(s):  
Xin Wang ◽  
Gang Xu ◽  
Xiaoju Liu ◽  
Yang Liu ◽  
Shuye Zhang ◽  
...  

AbstractIn response to emerging infectious diseases, such as the recent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to quickly identify and understand responsible pathogens, risk factors, host immune responses, and pathogenic mechanisms at both the molecular and cellular levels. The recent development of multiomic technologies, including genomics, proteomics, metabolomics, and single-cell transcriptomics, has enabled a fast and panoramic grasp of the pathogen and the disease. Here, we systematically reviewed the major advances in the virology, immunology, and pathogenic mechanisms of SARS-CoV-2 infection that have been achieved via multiomic technologies. Based on well-established cohorts, omics-based methods can greatly enhance the mechanistic understanding of diseases, contributing to the development of new diagnostics, drugs, and vaccines for emerging infectious diseases, such as COVID-19.


2004 ◽  
Vol 15 (3) ◽  
pp. 167-170 ◽  
Author(s):  
Bhagirath Singh

Although the local public health response to the severe acute respiratory syndrome outbreak in Canada was critical to the diagnosis, management and treatment of patients, such a rapid research response required a national effort to engage the research and stakeholder communities. The Canadian research effort, coordinated through the Institute of Infection and Immunity of the Canadian Institutes of Health Research and the Michael Smith Foundation for Health Research, has provided insight into the mechanisms required to ensure the rapid development of strategical initiatives in response to emerging infectious diseases. It has also provided a rational basis to set up a national network to be engaged if needed in the future.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 330
Author(s):  
Tiana M. Scott ◽  
Sam Jensen ◽  
Brett E. Pickett

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of coronavirus disease-2019 (COVID-19), is a novel Betacoronavirus that was first reported in Wuhan, China in December of 2019. The virus has since caused a worldwide pandemic that highlights the need to quickly identify potential prophylactic or therapeutic treatments that can reduce the signs, symptoms, and/or spread of disease when dealing with a novel infectious agent. To combat this problem, we constructed a computational pipeline that uniquely combines existing tools to predict drugs and biologics that could be repurposed to combat an emerging pathogen. Methods: Our workflow analyzes RNA-sequencing data to determine differentially expressed genes, enriched Gene Ontology (GO) terms, and dysregulated pathways in infected cells, which can then be used to identify US Food and Drug Administration (FDA)-approved drugs that target human proteins within these pathways. We used this pipeline to perform a meta-analysis of RNA-seq data from cells infected with three Betacoronavirus species including severe acute respiratory syndrome coronavirus (SARS-CoV; SARS), Middle East respiratory syndrome coronavirus (MERS-CoV; MERS), and SARS-CoV-2, as well as respiratory syncytial virus and influenza A virus to identify therapeutics that could be used to treat COVID-19.  Results: This analysis identified twelve existing drugs, most of which already have FDA-approval, that are predicted to counter the effects of SARS-CoV-2 infection. These results were cross-referenced with interventional clinical trials and other studies in the literature to identify drugs on our list that had previously been identified or used as treatments for COIVD-19 including canakinumab, anakinra, tocilizumab, sarilumab, and baricitinib. Conclusions: While the results reported here are specific to Betacoronaviruses, such as SARS-CoV-2, our bioinformatics pipeline can be used to quickly identify candidate therapeutics for future emerging infectious diseases.


Author(s):  
Sebastián Campbell-Quintero ◽  
Santiago Campbell-Quintero ◽  
Santiago Campbell-Silva

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS), present a major threat to public health. In December 2019, a novel coronavirus referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the causative agent of a respiratory syndrome named coronavirus disease 2019 (COVID-19). Since then, the pandemic has escalated. The spectrum of COVID-19 presentations ranges from mild self-limited flulike illness to severe viral pneumonia leading to acute respiratory distress syndrome that can be potentially fatal.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 330
Author(s):  
Tiana M. Scott ◽  
Sam Jensen ◽  
Brett E. Pickett

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of coronavirus disease-2019 (COVID-19), is a novel Betacoronavirus that was first reported in Wuhan, China in December of 2019. The virus has since caused a worldwide pandemic that highlights the need to quickly identify potential prophylactic or therapeutic treatments that can reduce the signs, symptoms, and/or spread of disease when dealing with a novel infectious agent. To combat this problem, we constructed a computational pipeline that uniquely combines existing tools to predict drugs and biologics that could be repurposed to combat an emerging pathogen. Methods: Our workflow analyzes RNA-sequencing data to determine differentially expressed genes, enriched Gene Ontology (GO) terms, and dysregulated pathways in infected cells, which can then be used to identify US Food and Drug Administration (FDA)-approved drugs that target human proteins within these pathways. We used this pipeline to perform a meta-analysis of RNA-seq data from cells infected with three Betacoronavirus species including severe acute respiratory syndrome coronavirus (SARS-CoV; SARS), Middle East respiratory syndrome coronavirus (MERS-CoV; MERS), and SARS-CoV-2, as well as respiratory syncytial virus and influenza A virus to identify therapeutics that could be used to treat COVID-19.  Results: This analysis identified twelve existing drugs, most of which already have FDA-approval, that are predicted to counter the effects of SARS-CoV-2 infection. These results were cross-referenced with interventional clinical trials and other studies in the literature to identify drugs on our list that had previously been identified or used as treatments for COIVD-19 including canakinumab, anakinra, tocilizumab, sarilumab, and baricitinib. Conclusions: While the results reported here are specific to Betacoronaviruses, such as SARS-CoV-2, our bioinformatics pipeline can be used to quickly identify candidate therapeutics for future emerging infectious diseases.


2020 ◽  
Vol 21 (11) ◽  
pp. 3843 ◽  
Author(s):  
Xinling Wang ◽  
Shuai Xia ◽  
Qian Wang ◽  
Wei Xu ◽  
Weihua Li ◽  
...  

In the past 17 years, three novel coronaviruses have caused severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the coronavirus disease 2019 (COVID-19). As emerging infectious diseases, they were characterized by their novel pathogens and transmissibility without available clinical drugs or vaccines. This is especially true for the newly identified COVID-19 caused by SARS coronavirus 2 (SARS-CoV-2) for which, to date, no specific antiviral drugs or vaccines have been approved. Similar to SARS and MERS, the lag time in the development of therapeutics is likely to take months to years. These facts call for the development of broad-spectrum anti-coronavirus drugs targeting a conserved target site. This review will systematically describe potential broad-spectrum coronavirus fusion inhibitors, including antibodies, protease inhibitors, and peptide fusion inhibitors, along with a discussion of their advantages and disadvantages.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 86-93
Author(s):  
Dhirajsingh Sumersingh Rajput

Evolution is continuous process of changes in structural and physiological mechanism in living being. Microbes/pathogens can evolve naturally or artificially and become resistant to various medicines. Novel coronavirus is such evolved pathogen of coronavirus group. Enough strong immunity is needed to prevent or survive from COVID-19 pandemic. Ayurveda provides ways for evolving physiological responses to built immunity. Present work is brief attempt to increase insight in this filed.Present review was done based on simple theory of evolution, recent updates regarding prevention of COVID-19, Ayurveda aspect toward infectious diseases and Ayurveda ways towards prevention of infectious diseases with special reference to COVID-19. Person with impaired immunity is more susceptible for COVID-19 and thus immunity is an important preventing factor. Ayurveda Rasayana (rejuvanation) herbs, Yoga exercises, Pranayama (special breathing exercise), daily regimens and personal hygiene guidelines can be helpful strategies in controlling the spread of COVID-19.The preventive aspects of pandemic situations are narrated in Ayurveda with enough details. These ways need to be scientifically explored and refined for precision. As prevention is always better than cure hence Ayurveda ways can be considered for future strategies to avoid pandemics such as COVID-19.  There is great need of research on Ayurveda medicines on COVID-19 like diseases.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1026-1033
Author(s):  
Nivedha Valliammai Mahalingam ◽  
Abilasha R ◽  
Kavitha S

Enormous successes have been obtained against the control of major epidemic diseases, such as SARS, MERS, Ebola, Swine Flu in the past. Dynamic interplay of biological, socio-cultural and ecological factors, together with novel aspects of human-animal interphase, pose additional challenges with respect to the emergence of infectious diseases. The important challenges faced in the control and prevention of emerging and re-emerging infectious diseases range from understanding the impact of factors that are necessary for the emergence, to development of strengthened surveillance systems that can mitigate human suffering and death. The aim of the current study is to assess the awareness of symptomatic differences between viral diseases like COVID-19, SARS, Swine flu and common cold among dental students that support the prevention of emergence or re-emergence. Cross-sectional type of study conducted among the undergraduate students comprising 100 Subjects. A questionnaire comprising 15 questions in total were framed, and responses were collected in Google forms in SPSS Software statistical analysis. The study has concluded that dental students have an awareness of the symptomatic differences between infectious viral disease. The study concluded that the awareness of symptomatic differences between viral diseases like COVID-19, SARS, Swine flu, Common cold is good among the dental students who would pave the way for early diagnosis and avoid spreading of such diseases. A further awareness can be created by regular webinars, seminars and brainstorming sessions among these healthcare professionals.


Sign in / Sign up

Export Citation Format

Share Document