scholarly journals PROBLEMS AND SECURITY THREATS TO IOT DEVICES

2021 ◽  
Vol 3 (11) ◽  
pp. 31-42
Author(s):  
Ivan Opirskyy ◽  
Roman Holovchak ◽  
Iryna Moisiichuk ◽  
Tetyana Balianda ◽  
Sofiia Haraniuk

The Internet of Things or IoT is billions of physical devices connected to the Internet. Its main premise is simply an extended type of connection, which can then be used as a basis for all kinds of functions. IoT describes a network of physical objects - "things" that are built into sensors, software and other technologies to connect and communicate with other devices and systems over the Internet. Problems of system protection, including the use of IoT devices are studied by many scientists and specialists in this field, but in today's world, not every manufacturer is ready to declare vulnerabilities and general insecurity of their products (devices). Throughout the IoT environment, from manufacturers to users, there are still many IoT security issues, such as manufacturing standards, update management, physical hardening, user knowledge and awareness. This article examines the vulnerabilities of the Internet of Things. The analysis of information transfer technologies of IoT devices (in particular ZigBee, Signfox and Bluetooth) is carried out. The most common threats that a user may encounter have been identified and analyzed. It is also established that usually not only the manufacturer poses a threat to the security of IoT devices. There are also a number of tips for users who want to reduce the risk of data leakage associated with vulnerabilities in the Internet of Things. Unfortunately, it is not uncommon for such devices to be incorrectly set up, used and stored. Extremely common is the user's refusal to update the software, which in turn leaves open those vulnerabilities that the manufacturer is trying to fix. The main purpose of the article is to determine the causes of security threats to the Internet of Things, by analyzing data transmission technologies, analysis of the threats themselves, identifying the most critical of them and ways to reduce the risk of data theft

2016 ◽  
Vol 54 (2(108)) ◽  
pp. 22-36
Author(s):  
Christopher Biedermann

PURPOSE/THESIS: The purpose of this paper is to use a recent cyber-attack to highlight the current state of readiness of Internet of Things (IoT) technologies with regard to security vulnerabilities as well as fundamental – in the author’s opinion – changes that will need to take place within these industries and technologies to mitigate the overall cybersecurity risk. APPROACH/METHODS: The analysis of the findings from numerous existing published security studies. RESULTS AND CONCLUSIONS: The following conclusions were reached: (1) in the world becoming more and more interconnected through the web enabled devices (IoT devices), new forms of security threats have been developed; (2) at present IoT devices introduce a high level of vulnerability; (3) many of these risks may be mitigated with already existing technologies; (4) however, due to the fragmented and heterogeneous nature of the IoT devices, the implementation of even basic levels of security is more challenging than in the case of traditional Internet connected devices (e.g. personal computers); (5) the industry needs to face and address three key issues that will in turn help to mitigate the unique security threats posed by IoT devices, namely: the drive towards open standards, the industry cooperation and consolidation, and the improvement of consumer awareness. ORIGINALITY/VALUE: The value of the research is to highlight the security issues related to the Internet of Things and propose solutions that must be implemented to increase the level of security awareness within the IoT environment.


Author(s):  
Anjum Nazir Qureshi Sheikh ◽  
Asha Ambhaikar ◽  
Sunil Kumar

The internet of things is a versatile technology that helps to connect devices with other devices or humans in any part of the world at any time. Some of the researchers claim that the number of IoT devices around the world will surpass the total population on the earth after a few years. The technology has made life easier, but these comforts are backed up with a lot of security threats. Wireless medium for communication, large amount of data, and device constraints of the IoT devices are some of the factors that increase their vulnerability to security threats. This chapter provides information about the attacks at different layers of IoT architecture. It also mentions the benefits of technologies like blockchain and machine learning that can help to solve the security issues of IoT.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


Author(s):  
Ishfaq Sultan ◽  
Mohammad Tariq Banday

The spatial ubiquity and the huge number of employed nodes monitoring the surroundings, individuals, and devices makes security a key challenge in IoT. Serious security apprehensions are evolving in terms of data authenticity, integrity, and confidentiality. Consequently, IoT requires security to be assured down to the hardware level, as the authenticity and the integrity need to be guaranteed in terms of the hardware implementation of each IoT node. Physically unclonable functions recreate the keys only while the chip is being powered on, replacing the conventional key storage which requires storing information. Compared to extrinsic key storage, they are able to generate intrinsic keys and are far less susceptible against physical attacks. Physically unclonable functions have drawn considerable attention due to their ability to economically introduce hardware-level security into individual silicon dice. This chapter introduces the notion of physically unclonable functions, their scenarios for hardware security in IoT devices, and their interaction with traditional cryptography.


Author(s):  
Kamalendu Pal

The internet of things (IoT) is ushering a new age of technology-driven automation of information systems into the manufacturing industry. One of the main concerns with IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the safety of the data. Many security issues arise because of the centralized architecture of IoT-based information systems. Another concern is the lack of appropriate authentication and access control schemes to moderate the access to information generated by the IoT devices in the manufacturing industry. Hence, the question that arises is how to ensure the identity of the manufacturing machinery or the communication nodes. This chapter presents the advantages of blockchain technology to secure the operation of the modern manufacturing industry in a trustless environment with IoT applications. The chapter reviews the challenges and threats in IoT applications and how integration with blockchain can resolve some of the manufacturing enterprise information systems (EIS).


Author(s):  
G. Ikrissi ◽  
T. Mazri

Abstract. Smart environments provide many benefits to the users including comfort, convenience, energy efficiency, safety, automation, and service quality. The Internet of Things (IoT) has developed to become one of the widely used technologies in smart environments. Many security attacks and threats are generated by security flaws in IoT-based systems and devices, which may affect smart environments applications. As a result, security is one of the most important issues in any smart area or environment based on the IoT model. This paper presents an overview of smart environments based on IoT technology and highlights the main security issues and countermeasures in the four layers of smart environment IoT architecture. It also reviews some of the current solutions that ensure the security of information in smart environments applications.


Author(s):  
Yash Choudhary ◽  
B Umamaheswari ◽  
Vijeta Kumawat

IoT or the Internet of things refers to all the physical devices connected to the internet. IoT consists of computing devices that are web-enabled and have the capability of sensing, collecting, and sending data. IoT provides the ability to remote control appliances and has many more applications. Since IoT is becoming a big part of society, it is necessary to ensure that these devices provide adequate security measures. This paper discusses various security issues in IoT systems like threats, vulnerabilities and some countermeasures which can be used to provide some security. Developing a secure device is now more important than ever, as with the increase in digitization, much of a user’s data is available on these devices. Securing data is a primary concern in any system, as internet-enabled devices are easier to hack. The idea of this paper is to spread awareness and improve the security of IoT devices.


Author(s):  
Alaa Ahmed Abbood ◽  
Qahtan Makki Shallal ◽  
Mohammed A. Fadhel

<p><span>Internet of Things (IoT) devices are spread in different areas such as e-tracking, e-commerce, e-home, and e-health, etc. Thus, during the last ten years, the internet of things technology (IoT) has been a research focus. Both privacy and security are the key concerns for the applications of IoT, and still face a huge number of challenges. There are many elements used to run the IoT technology which include hardware and software such as sensors, GPS, cameras, applications, and so forth. In this paper, we have analyzed and explain the technology of IoT along with its elements, security features, security issues, and threats that attached to each layer of IoT to guide the consideration of researchers into solve and understand the most serious problems in IoT environment.</span></p>


Author(s):  
Sreelakshmi K. K. ◽  
Ashutosh Bhatia ◽  
Ankit Agrawal

The internet of things (IoT) has become a guiding technology behind automation and smart computing. One of the major concerns with the IoT systems is the lack of privacy and security preserving schemes for controlling access and ensuring the security of the data. A majority of security issues arise because of the centralized architecture of IoT systems. Another concern is the lack of proper authentication and access control schemes to moderate access to information generated by the IoT devices. So the question that arises is how to ensure the identity of the equipment or the communicating node. The answer to secure operations in a trustless environment brings us to the decentralized solution of Blockchain. A lot of research has been going on in the area of convergence of IoT and Blockchain, and it has resulted in some remarkable progress in addressing some of the significant issues in the IoT arena. This work reviews the challenges and threats in the IoT environment and how integration with Blockchain can resolve some of them.


Author(s):  
Ishfaq Sultan ◽  
Mohammad Tariq Banday

The spatial ubiquity and the huge number of employed nodes monitoring the surroundings, individuals, and devices makes security a key challenge in IoT. Serious security apprehensions are evolving in terms of data authenticity, integrity, and confidentiality. Consequently, IoT requires security to be assured down to the hardware level, as the authenticity and the integrity need to be guaranteed in terms of the hardware implementation of each IoT node. Physically unclonable functions recreate the keys only while the chip is being powered on, replacing the conventional key storage which requires storing information. Compared to extrinsic key storage, they are able to generate intrinsic keys and are far less susceptible against physical attacks. Physically unclonable functions have drawn considerable attention due to their ability to economically introduce hardware-level security into individual silicon dice. This chapter introduces the notion of physically unclonable functions, their scenarios for hardware security in IoT devices, and their interaction with traditional cryptography.


Sign in / Sign up

Export Citation Format

Share Document