scholarly journals In Vitro Studying the Effect of Adding Autologous Platelet Rich Plasma (PRP) to the Human Semen on the Sperm DNA Integrity

2021 ◽  
Vol 10 (2) ◽  
pp. 90-100
Author(s):  
Dhafer Hamdan ◽  
Ali Rahim ◽  
Ula Al-Kawaz

For conception and the development of healthy embryos, sperm DNA integrity is crucial. According to a growing body of studies, there is a strong correlation between sperm DNA damage and male infertility. Among the new medicines being developed in the medical field, the application of Platelet Rich Plasma (PRP) in human reproduction has yet to be examined. A total of 100 semen samples were used in the current experimental investigation. From November 2020 to June 2021, the research was conducted at the High Institute for Infertility Diagnosis and Assisted Reproductive Technologies. Masturbation was used to get an ejaculated semen sample. After semen analysis, the samples were separated into two equal parts, one without autologous PRP and the other with 2% autologous PRP, with the DNA fragmentation assessed using the Sperm Chromatin Dispersion Test. There was highly significant reduction in DNA fragmentation index (p < 0.001). The mean sperm DNA integrity was reduced after adding PRP (33.85±16.73 vs 38.55±16.64), Mean (± SE). PRP has been shown to improve human sperm DNA integrity.

Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummarySperm DNA fragmentation is referred to as one of the main causes of male infertility. Failures in the protamination process, apoptosis and action of reactive oxygen species (ROS) are considered the most important causes of DNA fragmentation. Action of ROS or changes in sperm protamination would increase the susceptibility of sperm DNA to fragmentation. Routine semen analysis is unable to estimate sperm chromatin damage. Sperm DNA integrity influences sperm functional capability, therefore tests that measure sperm DNA fragmentation are important to assess fertility disorders. Actually, there is a considerable number of methods for assessing sperm DNA fragmentation and chromatin integrity, sperm chromatin stability assay (SCSA modified), sperm chromatin dispersion (SCD), comet assay, transferase dUTP nick end labelling (TUNEL); and protamine evaluation in sperm chromatin assay, such as toluidine blue, CMA3, protamine expression and evaluation of cysteine radicals. This review aims to describe the main causes of sperm DNA fragmentation and the tests commonly used to evaluate sperm DNA fragmentation.


Reproduction ◽  
2013 ◽  
Vol 146 (5) ◽  
pp. 433-441 ◽  
Author(s):  
Renata Simões ◽  
Weber Beringui Feitosa ◽  
Adriano Felipe Perez Siqueira ◽  
Marcilio Nichi ◽  
Fabíola Freitas Paula-Lopes ◽  
...  

Sperm chromatin fragmentation may be caused by a number of factors, the most significant of which is reactive oxygen species. However, little is known about the effect of sperm oxidative stress (OS) on DNA integrity, fertilization, and embryonic development in cattle. Therefore, the goal of this study was to evaluate the influence of sperm OS susceptibility on the DNA fragmentation rate and in vitro embryo production (IVP) in a population of bulls. Groups of cryopreserved sperm samples were divided into four groups, based on their susceptibility to OS (G1, low OS; G2, average OS; G3, high OS; and G4, highest OS). Our results demonstrated that the sperm DNA integrity was compromised in response to increased OS susceptibility. Furthermore, semen samples with lower susceptibility to OS were also less susceptible to DNA damage (G1, 4.06%; G2, 6.09%; G3, 6.19%; and G4, 6.20%). In addition, embryo IVP provided evidence that the embryo cleavage rate decreased as the OS increased (G1, 70.18%; G2, 62.24%; G3, 55.85%; and G4, 50.93%), but no significant difference in the blastocyst rate or the number of blastomeres was observed among the groups. The groups with greater sensitivity to OS were also associated with a greater percentage of apoptotic cells (G1, 2.6%; G2, 2.76%; G3, 5.59%; and G4, 4.49%). In conclusion, we demonstrated that an increased susceptibility to OS compromises sperm DNA integrity and consequently reduces embryo quality.


2016 ◽  
Vol 8 (33) ◽  
pp. 6260-6264 ◽  
Author(s):  
Reza Nosrati ◽  
Max M. Gong ◽  
Maria C. San Gabriel ◽  
Armand Zini ◽  
David Sinton

A comprehensive paper-based assay for sperm chromatin integrity analysis has been demonstrated that quantifies both DNA fragmentation and packaging.


2016 ◽  
Vol 283 (1826) ◽  
pp. 20152708 ◽  
Author(s):  
Javier delBarco-Trillo ◽  
Olga García-Álvarez ◽  
Ana Josefa Soler ◽  
Maximiliano Tourmente ◽  
José Julián Garde ◽  
...  

Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.


2017 ◽  
Vol 29 (3) ◽  
pp. 630 ◽  
Author(s):  
S. D. Johnston ◽  
C. López-Fernández ◽  
F. Arroyo ◽  
J. L. Fernández ◽  
J. Gosálvez

Herein we report a method of assessing DNA fragmentation in the saltwater crocodile using the sperm chromatin dispersion test (SCDt) after including frozen–thawed spermatozoa in a microgel (Halomax; Halotech DNA, Madrid, Spain). Following controlled protein depletion, which included a reducing agent, sperm nuclei with fragmented DNA showed a homogeneous and larger halo of chromatin dispersion with a corresponding reduced nucleoid core compared with sperm with non-fragmented DNA. The presence of DNA damage was confirmed directly by incorporation of modified nucleotides using in situ nick translation (ISNT) and indirectly by studying the correlation of the SCDt with the results of DNA damage visualisation using a two-tailed comet assay (r = 0.90; P = 0.037). Results of the SCDt immediately following thawing and after 5 h incubation at 37°C in order to induce a range of DNA damage revealed individual crocodile differences in both the baseline level of DNA damage and DNA longevity.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4329 ◽  
Author(s):  
Michal Duracka ◽  
Norbert Lukac ◽  
Miroslava Kacaniova ◽  
Attila Kantor ◽  
Lukas Hleba ◽  
...  

Male subfertility is a global issue in human reproduction as well as in animal reproduction. Bacterial infection and semen contamination are still widely overlooked. As the collection of ejaculates is not a sterile process, it is necessary to add antimicrobial agents to avoid a possible depreciation of semen samples. As traditionally used antibiotics have been questioned because of an ever-increasing bacterial resistance, natural bioactive molecules could offer an alternative because of their antibacterial and antioxidant properties. As such, we decided to compare the effects of selected natural biomolecules (resveratrol-RES, quercetin-QUE and curcumin-CUR) with routinely used antibiotics in animal biotechnologies (penicillin-PEN, gentamicin-GEN and kanamycin-KAN) on the rabbit sperm vitality in the presence of Enterococcus faecalis. Changes in the sperm structural integrity and functional activity were monitored at 0, 2, 4 and 6 h. Computer-assisted sperm analysis (CASA) was used for the assessment of spermatozoa motility. Production of reactive oxygen species (ROS) was evaluated using chemiluminiscence, while the mitochondrial membrane potential (ΔΨm) was examined using the JC-1 dye. Finally, the sperm chromatin dispersion (SCD) test was used to assess DNA fragmentation, and changes to the membrane integrity were evaluated with the help of annexin V/propidium iodide. The motility assessment revealed a significant sperm motility preservation following treatment with GEN (p < 0.001), followed by PEN and CUR (p < 0.01). QUE was the most capable substance to scavenge excessive ROS (p < 0.001) and to maintain ΔΨm (p < 0.01). The SCD assay revealed that the presence of bacteria and antibiotics significantly (p < 0.05) increased the DNA fragmentation. On the other hand, all bioactive compounds readily preserved the DNA integrity (p < 0.05). In contrast to the antibiotics, the natural biomolecules significantly maintained the sperm membrane integrity (p < 0.05). The microbiological analysis showed that GEN (p < 0.001), KAN (p < 0.001), PEN (p < 0.01) and CUR (p < 0.01) exhibited the strongest antibacterial activity against E. faecalis. In conclusion, all selected biomolecules provided protection to rabbit spermatozoa against deleterious changes to their structure and function as a result of Enterococcus faecalis contamination. Therefore, administration of RES, QUE and/or CUR to rabbit semen extenders in combination with a carefully selected antibacterial substance may be desirable.


2019 ◽  
Vol 4 ◽  
pp. 31-31 ◽  
Author(s):  
Cécile Le Saint ◽  
Isaac-Jacques Kadoch ◽  
François Bissonnette ◽  
Julie Choi ◽  
Jonathan Zini ◽  
...  

Reproduction ◽  
2009 ◽  
Vol 138 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Carmen López-Fernández ◽  
Matthew J G Gage ◽  
Francisca Arroyo ◽  
Altea Gosálbez ◽  
Ana M Larrán ◽  
...  

Spermatozoal haplotypic DNA is prone to damage, leading to male fertility problems. So far, the assessment of sperm DNA breakage has been challenging because protamines render the nuclear chromatin highly compacted. Here, we report the application of a new test to quantify DNA fragmentation in spermatozoa of an externally fertilizing teleost fish. The sperm chromatin dispersion (SCD) test uses a species-specific lysing solution to generate controlled protein depletion that, followed by DNA-specific fluorescent labelling, allows an easy morphological discrimination between nuclei affected by DNA damage. Using tench (Tinca tinca) as our model, we first trialled the test against established, but more technically demanding, assays employing in situ nick translation (ISNT) and the comet assay. The SCD test showed high concordance with ISNT, comet assay measures and a chromatin-swelling test, confirming the application of this straightforward SCD technique to various aspects of reproductive biology. Second, we examined between-male variation in DNA damage, and measured changes through time following spermatozoal activation. Between-male variation in the basal levels of average DNA damage ranged from 0 to 20% of sperm showing damage, and all showed increases in DNA fragmentation through time (0–60 min). The rates of DNA damage increase are the fastest so far recorded in sperm for a living organism, and may relate to the external fertilization mode. Our findings have relevance for broodstock selection and optimizing IVF protocols routinely used in modern aquaculture.


Sign in / Sign up

Export Citation Format

Share Document