scholarly journals Oil Reservoir Permeability Estimation from Well Logging Data Using Statistical Methods (A Case Study: South Pars Oil Reservoir)

2017 ◽  
Vol 3 (10) ◽  
pp. 831 ◽  
Author(s):  
Akbar Esmailzadeh ◽  
Sina Ahmadi ◽  
Reza Rooki ◽  
Reza Mikaeil

Permeability is a key parameter that affects fluids flow in reservoir and its accurate determination is a significant task. Permeability usually is measured using practical approaches such as either core analysis or well test which both are time and cost consuming. For these reasons applying well logging data in order to obtaining petrophysical properties of oil reservoir such as permeability and porosity is common. Most of petrophysical parameters generally have relationship with one of well logged data. But reservoir permeability does not show clear and meaningful correlation with any of logged data. Sonic log, density log, neutron log, resistivity log, photo electric factor log and gamma log, are the logs which effect on permeability. It is clear that all of above logs do not effect on permeability with same degree. Hence determination of which log or logs have more effect on permeability is essential task. In order to obtaining mathematical relationship between permeability and affected log data, fitting statistical nonlinear models on measured geophysical data logs as input data and measured vertical and horizontal permeability data as output, was studied. Results indicate that sonic log, density log, neutron log and resistivity log have most effect on permeability, so nonlinear relationships between these logs and permeability was done.

2019 ◽  
pp. 7-13
Author(s):  
Yury E. Katanov ◽  
Marina E. Savina ◽  
Saveliy A. Yagafarov

The article is devoted to the problem of identifying deposits in Western Siberia completely undersaturated with oil. At a primary test of such reservoirs from their roofing part joint inflows of oil with water are always received. The analysis of research results shows that the determination of the deposit area depends on a large extent on the reliability of the installed fluid contacts in the section of each well. We give examples of discrepancies between well testing interpretation and well test results. There are also examples of the groundlessness of the separation of a single geological body into several counting objects. The size of the shift of oil-water contact is determined by the action of capillary forces.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


Sign in / Sign up

Export Citation Format

Share Document