scholarly journals Model Development for the Prediction of the Resilient Modulus of Warm Mix Asphalt

2020 ◽  
Vol 6 (4) ◽  
pp. 702-713
Author(s):  
Huda Mahdi Saleh ◽  
Amjad H. Albayati

Increasing material prices coupled with the emission of hazardous gases through the production and construction of Hot Mix Asphalt (HMA) has driven a strong movement toward the adoption of sustainable construction technology. Warm Mix Asphalt (WMA) is considered relatively a new technology, which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt. The Resilient modulus (Mr) which can be defined as the ratio of axial pulsating stress to the corresponding recoverable strain, is used to evaluate the relative quality of materials as well as to generate input for pavement design or pavement evaluation and analysis. Based on the aforementioned preface, it is possible to conclude that there is a real need to develop a predictive model for the resilient modulus of the pavement layer constructed using WMA. Within the experimental part of this study, 162 cylindrical specimens of WMA were prepared with dimensions of 101.6 mm in diameter and 63.5 mm in thickness. The specimens were subjected to the indirect tension test by pneumatic repeated loading system (PRLS) to characterize the resilient modulus. The test conditions (temperature and load duration) as well as mix parameters (asphalt content, filler content and type, and air voids) are considered as variables during the specimen’s preparation. Following experimental part, the statistical part of the study includes a model development to predict the Mr using Minitab vs 17 software. The coefficient of determination (R2) is 0.964 for the predicted model which is referred to a very good relation obtained. The Mr value for the WMA is highly affected by the temperature and moderately by the load duration, whereas the mix parameters have a lower influence on the Mr.

2017 ◽  
Vol 44 (6) ◽  
pp. 417-425 ◽  
Author(s):  
E. Mousa ◽  
A. Azam ◽  
M. El-Shabrawy ◽  
S.M. El-Badawy

This paper presents the engineering characteristics of reclaimed asphalt pavement (RAP), blended with virgin aggregate for unbound base and subbase layers. The proportions of RAP were 0%, 20%, 60%, 80%, and 100% by total mass of the blend. The experimental laboratory testing included index properties such as gradation, modified Proctor compaction, California Bearing Ratio, and hydraulic conductivity. Repeated load resilient modulus testing was conducted on the blends. The impact of load duration on resilient modulus was also investigated. A strong inverse trend was found between resilient modulus and California Bearing Ratio. An accurate model was proposed for the prediction of the resilient modulus as a function of stress state and reclaimed asphalt pavement percentage with coefficient of determination of 0.94. Finally, multilayer elastic analysis of typical pavement sections with the base layer constructed of virgin aggregate and reclaimed asphalt pavement blends showed good performance.


Author(s):  
Wojciech Sas ◽  
Andrzej Głuchowski ◽  
Alojzy Szymański

Abstract Determination of the Resilient modulusMR for the lime stabilized clay obtained from therepeated loading CBR tests. The main aim of this paper is to prove that CBR repeated test is useful to give an adequate like unconfi ned cyclic triaxial test parameters for design the pavement and subgrade soils. That parameter is the Resilient modulus (MR) which is the elastic modulus based on the recoverable strain under repeated load. Resilient modulus (MR), is an important parameter which characterizes the subgrade’s ability to withstand repetitive stresses under traffic loadings. The 1993 AASHTO guide for design of flexible pavements recommends the use of MR. The additional aim is connected with the concept of sustainable development. For many countries, where resources are at premium, it is very important that stabilized local soil can be used for road construction. For ensuring that stabilized clay can be used for pavement material standard compaction, CBR and repeated CBR tests were performed. In that paper parameter MRof the subgrade lime stabilized clay soil by laboratory CBR repeated test were determined using for calculation formulas from triaxial cyclic test. Based on AASHTO empirical equation the static CBR values using back analysis was also calculated. Finally both values of CBR determined and calculated were compared.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 59
Author(s):  
Sahar S. Neham

Properties and performance of hot mix asphalt are highly affected by aggregate as it is consists of 85 to 95 percent by weight and 75 to 85 percent by volume mineral aggregate. Resilient modulus was a very important parameter used either as input data in the procedure of pavement design or to evaluate the relative quality of materials. This research study the effect of nominal aggregate size on the resilient modulus value with different variations  such as tested temperature, percent of asphalt cement and filler content, load duration, and asphalt viscosity. Results under different variables showed that nominal aggregate size has a significant effect on the resilient modulus value as well as resilient modulus value decreases by (21.04% - 26.66%) when the nominal aggregate size increases from 19mm to 25mm while it decreases by (22.43 - 29.50%) when the nominal aggregate size increases from 25mm to 37.3mm. 


Author(s):  
Sandeep Samantaray ◽  
Abinash Sahoo

Accurate prediction of water table depth over long-term in arid agricultural areas are very much important for maintaining environmental sustainability. Because of intricate and diverse hydrogeological features, boundary conditions, and human activities researchers face enormous difficulties for predicting water table depth. A virtual study on forecast of water table depth using various neural networks is employed in this paper. Hybrid neural network approach like Adaptive Neuro Fuzzy Inference System (ANFIS), Recurrent Neural Network (RNN), Radial Basis Function Neural Network (RBFN) is employed here to appraisal water levels as a function of average temperature, precipitation, humidity, evapotranspiration and infiltration loss data. Coefficient of determination (R2), Root mean square error (RMSE), and Mean square error (MSE) are used to evaluate performance of model development. While ANFIS algorithm is used, Gbell function gives best value of performance for model development. Whole outcomes establish that, ANFIS accomplishes finest as related to RNN and RBFN for predicting water table depth in watershed.


2013 ◽  
Vol 20 (1) ◽  
pp. 256-266 ◽  
Author(s):  
Ziari Hasan ◽  
Behbahani Hamid ◽  
Izadi Amir ◽  
Nasr Danial

2016 ◽  
Vol 846 ◽  
pp. 683-689 ◽  
Author(s):  
M. Zulfikri M. Zainudin ◽  
Faridah Hanim Khairuddin ◽  
Choy Peng Ng ◽  
Siti Khadijah Che Osmi ◽  
N. Aina Misnon ◽  
...  

Hot Mix Asphalt (HMA) is a combination of asphalt and aggregates that will give durable road surface for pavement and is widely used in Malaysia. However, due to damages caused by excessive traffic loadings, the HMA pavement normally required frequently maintenance and rehabilitation works. Therefore in recent years, research on modification of HMA has tremendously increased in highway construction field using natural sources and recycling products such as rubber, plastic, anti-stripping agents, waste materials and etc. This study was conducted to evaluate the effect of sugarcane bagasse ash (SCBA) used as filler in HMA. Experimental laboratory were done to compare the properties of normal HMA sample with modified HMA sample using SCBA. Result obtained for both sample were compared to Malaysian Public Works Department (MPWD) specification. The laboratory result reveals that SCBA are effective in increasing the Marshall stability, flow and Resilient Modulus of normal HMA. The SCBA increases Marshall stability by 0.6%, flow 4.9% and Resilient Modulus 17.4% respectively of ordinary HMA and all test and analysis parameters for asphaltic concrete of SCBA sample comply with MPWD requirements. Therefore, SCBA has potential in modifying normal HMA.


2021 ◽  
Vol 11 (8) ◽  
pp. 3708
Author(s):  
Adham Mohammed Alnadish ◽  
Mohamad Yusri Aman ◽  
Herda Yati Binti Katman ◽  
Mohd Rasdan Ibrahim

The major goal of sustainable practices is to preserve raw resources through the utilization of waste materials as an alternative to natural resources. Decreasing the temperature required to produce asphalt mixes contributes to environmental sustainability by reducing energy consumption and toxic emissions. In this study, warm mix asphalt incorporating coarse steel slag aggregates was investigated. Warm mix asphalt was produced at different temperatures lower than the control asphalt mixes (hot mix asphalt) by 10, 20, and 30 °C. The performances of the control and warm mix asphalt were assessed through laboratory tests examining stiffness modulus, dynamic creep, and moisture sensitivity. Furthermore, a response surface methodology (RSM) was conducted by means of DESIGN EXPERT 11 to develop prediction models for the performance of warm mix asphalt. The findings of this study illustrate that producing warm mix asphalt at a temperature 10 °C lower than that of hot mix asphalt exhibited the best results, compared to the other mixes. Additionally, the warm mix asphalt produced at 30 °C lower than the hot mix asphalt exhibited comparable performance to the hot mix asphalt. However, as the production temperature increases, the performance of the warm mix asphalt improves.


2018 ◽  
Vol 34 ◽  
pp. 01026
Author(s):  
Ahmad Kamil Arshad ◽  
Haryati Awang ◽  
Ekarizan Shaffie ◽  
Wardati Hashim ◽  
Zanariah Abd Rahman

Reclaimed Asphalt Pavement (RAP) is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA) eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP) and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.


Sign in / Sign up

Export Citation Format

Share Document