scholarly journals Predicting various forms of endometriosis using artificial neural networks

Author(s):  
N. G. Sazonova ◽  
T. A. Makarenko ◽  
A. N. Narkevich

Introduction. Endometriosis is a difficult-to-diagnose pathology due to the diversity of clinical manifestations and the lack of high-precision markers necessary for rapid noninvasive diagnosis and timely administration of pathogenetically justified treatment.The aim of this work was to develop a computer system that allows us to assess the probability of endometriosis with various localizations in women, based on artificial neural networks.Material and Methods. The neural network mathematical models were constructed and tested based on data from 110 patients with morphologically pre-confirmed endometriosis. Patients were divided into training and test samples. The models were built based on anamnestic data and results of proteomic and enzyme immunoassays in blood plasma samples.Results and Discussion. In the course of the study, four mathematical models of neural networks were constructed to predict the presence or absence of endometriosis in a woman and its localization if present. Based on these mathematical models, a computer system “Differential diagnosis of endometriosis” was developed. This system allowed to assess the probability and localization of endometriosis in a patient based on parameters obtained as a result of neural network training.Conclusion. The developed computer diagnostic system allowed predicting the presence of endometriosis and its localization with a probability over 80%, depending on the predicted localization, based on data about the patient and the results of her examination. This system may be used for differential diagnosis of endometriosis from other diseases of the female reproductive system, as well as for differential diagnosis of various endometriosis localizations.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5127
Author(s):  
Szymon Buchaniec ◽  
Marek Gnatowski ◽  
Grzegorz Brus

One of the most common problems in science is to investigate a function describing a system. When the estimate is made based on a classical mathematical model (white-box), the function is obtained throughout solving a differential equation. Alternatively, the prediction can be made by an artificial neural network (black-box) based on trends found in past data. Both approaches have their advantages and disadvantages. Mathematical models were seen as more trustworthy as their prediction is based on the laws of physics expressed in the form of mathematical equations. However, the majority of existing mathematical models include different empirical parameters, and both approaches inherit inevitable experimental errors. Simultaneously, the approximation of neural networks can reproduce the solution exceptionally well if fed sufficient data. The difference is that an artificial neural network requires big data to build its accurate approximation, whereas a typical mathematical model needs several data points to estimate an empirical constant. Therefore, the common problem that developers meet is the inaccuracy of mathematical models and artificial neural networks. Another common challenge is the mathematical models’ computational complexity or lack of data for a sufficient precision of the artificial neural networks. Here we analyze a grey-box solution in which an artificial neural network predicts just a part of the mathematical model, and its weights are adjusted based on the mathematical model’s output using the evolutionary approach to avoid overfitting. The performance of the grey-box model is statistically compared to a Dense Neural Network on benchmarking functions. With the use of Shaffer procedure, it was shown that the grey-box approach performs exceptionally well when the overall complexity of a problem is properly distributed with the mathematical model and the Artificial Neural Network. The obtained calculation results indicate that such an approach could increase precision and limit the dataset required for learning. To show the applicability of the presented approach, it was employed in modeling of the electrochemical reaction in the Solid Oxide Fuel Cell’s anode. Implementation of a grey-box model improved the prediction in comparison to the typically used methodology.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


Author(s):  
M. A. Rafe Biswas ◽  
Melvin D. Robinson

A direct methanol fuel cell can convert chemical energy in the form of a liquid fuel into electrical energy to power devices, while simultaneously operating at low temperatures and producing virtually no greenhouse gases. Since the direct methanol fuel cell performance characteristics are inherently nonlinear and complex, it can be postulated that artificial neural networks represent a marked improvement in performance prediction capabilities. Artificial neural networks have long been used as a tool in predictive modeling. In this work, an artificial neural network is employed to predict the performance of a direct methanol fuel cell under various operating conditions. This work on the experimental analysis of a uniquely designed fuel cell and the computational modeling of a unique algorithm has not been found in prior literature outside of the authors and their affiliations. The fuel cell input variables for the performance analysis consist not only of the methanol concentration, fuel cell temperature, and current density, but also the number of cells and anode flow rate. The addition of the two typically unconventional variables allows for a more distinctive model when compared to prior neural network models. The key performance indicator of our neural network model is the cell voltage, which is an average voltage across the stack and ranges from 0 to 0:8V. Experimental studies were carried out using DMFC stacks custom-fabricated, with a membrane electrode assembly consisting of an additional unique liquid barrier layer to minimize water loss through the cathode side to the atmosphere. To determine the best fit of the model to the experimental cell voltage data, the model is trained using two different second order training algorithms: OWO-Newton and Levenberg-Marquardt (LM). The OWO-Newton algorithm has a topology that is slightly different from the topology of the LM algorithm by the employment of bypass weights. It can be concluded that the application of artificial neural networks can rapidly construct a predictive model of the cell voltage for a wide range of operating conditions with an accuracy of 10−3 to 10−4. The results were comparable with existing literature. The added dimensionality of the number of cells provided insight into scalability where the coefficient of the determination of the results for the two multi-cell stacks using LM algorithm were up to 0:9998. The model was also evaluated with empirical data of a single-cell stack.


2010 ◽  
Vol 163-167 ◽  
pp. 1854-1857
Author(s):  
Anuar Kasa ◽  
Zamri Chik ◽  
Taha Mohd Raihan

Prediction of internal stability for segmental retaining walls reinforced with geogrid and backfilled with residual soil was carried out using statistical methods and artificial neural networks (ANN). Prediction was based on data obtained from 234 segmental retaining wall designs using procedures developed by the National Concrete Masonry Association (NCMA). The study showed that prediction made using ANN was generally more accurate to the target compared with statistical methods using mathematical models of linear, pure quadratic, full quadratic and interactions.


2014 ◽  
Vol 38 (6) ◽  
pp. 1681-1693 ◽  
Author(s):  
Braz Calderano Filho ◽  
Helena Polivanov ◽  
César da Silva Chagas ◽  
Waldir de Carvalho Júnior ◽  
Emílio Velloso Barroso ◽  
...  

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.


2020 ◽  
Vol 8 (4) ◽  
pp. 469
Author(s):  
I Gusti Ngurah Alit Indrawan ◽  
I Made Widiartha

Artificial Neural Networks or commonly abbreviated as ANN is one branch of science from the field of artificial intelligence which is often used to solve various problems in fields that involve grouping and pattern recognition. This research aims to classify Letter Recognition datasets using Artificial Neural Networks which are weighted optimally using the Artificial Bee Colony algorithm. The best classification accuracy results from this study were 92.85% using a combination of 4 hidden layers with each hidden layer containing 10 neurons.


Author(s):  
А.В. Милов

В статье представлены математические модели на основе искусственных нейронных сетей, используемые для управления индукционной пайкой. Обучение искусственных нейронных сетей производилось с использованием многокритериального генетического алгоритма FFGA. This article presents mathematical models based on artificial neural networks used to control induction soldering. The artificial neural networks were trained using the FFGA multicriteria genetic algorithm. The developed models allow to control induction soldering under conditions of incomplete or unreliable information, as well as under conditions of complete absence of information about the technological process.


Author(s):  
Jason K. Ostanek

In much of the public literature on pin-fin heat transfer, Nusselt number is presented as a function of Reynolds number using a power-law correlation. Power-law correlations typically have an accuracy of 20% while the experimental uncertainty of such measurements is typically between 5% and 10%. Additionally, the use of power-law correlations may require many sets of empirical constants to fully characterize heat transfer for different geometrical arrangements. In the present work, artificial neural networks were used to predict heat transfer as a function of streamwise spacing, spanwise spacing, pin-fin height, Reynolds number, and row position. When predicting experimental heat transfer data, the neural network was able to predict 73% of array-averaged heat transfer data to within 10% accuracy while published power-law correlations predicted 48% of the data to within 10% accuracy. Similarly, the neural network predicted 81% of row-averaged data to within 10% accuracy while 52% of the data was predicted to within 10% accuracy using power-law correlations. The present work shows that first-order heat transfer predictions may be simplified by using a single neural network model rather than combining or interpolating between power-law correlations. Furthermore, the neural network may be expanded to include additional pin-fin features of interest such as fillets, duct rotation, pin shape, pin inclination angle, and more making neural networks expandable and adaptable models for predicting pin-fin heat transfer.


Sign in / Sign up

Export Citation Format

Share Document