scholarly journals Indirect Effects of the Digital Transformation on Environmental Sustainability: Methodological Challenges in Assessing the Greenhouse Gas Abatement Potential of ICT

10.29007/lx7q ◽  
2018 ◽  
Author(s):  
Jan C. T. Bieser ◽  
Lorenz M. Hilty

The digital transformation has direct and indirect effects on greenhouse gas (GHG) emissions. Direct effects are caused by the production, use and disposal of information and communication technology (ICT) hardware. Indirect effects include the changes to patterns of production and consumption in other domains. Studies quantifying both effects often conclude that net effects (indirect minus direct effects) can lead to a significant GHG emission reduction. We revisited a study by Accenture on ICT’s GHG abatement potential in Switzerland by reassessing the main assumptions. Our results confirm that ICT has the potential to reduce GHG emissions in Switzerland, especially in the building, transport and energy domains. However, our results also suggest that the potential is smaller than anticipated and that exploiting this potential requires targeted action. Reasons for differences among these results (and the results of similar other studies) are: degrees of freedom in the assessment methodology, selection of ICT use cases, allocation of impacts to ICT, definition of the baseline, estimation of the environmental impact, prediction of the future adoption of use cases, estimation of rebound effects, interaction among use cases, and extrapolation from use case to society- wide impacts. We suggest addressing these methodological challenges to improve comparability of results.

2021 ◽  
Vol 47 (2) ◽  
pp. 332-348
Author(s):  
Tariq Umar

Reduction in emissions is the key to tackle climate change issues and achieve environmental sustainability. The Gulf Cooperation Council member countries however, not only generate the highest quantity of MSW/capita when compared globally but also in most of these countries such waste is just dumped at different landfill stations. In Oman, the total quantity of MSW stood at 2.0 million tonnes/year. The emission from this waste is estimated at 2,989,467 tonnes/year (CO2 Equivalent). This article attempts to develop frameworks that considered landfilling, composting, and recycling of MSW and compared the emissions of these frameworks. The framework (F2) which proposes the landfilling and composting process for the organic waste which normally goes to landfills results in an increase of emissions by 7% as compared to landfill practice. Similarly, the samples of MSW collected in Oman show a good amount of recycling waste. The framework (F3) which considers the landfill, composting, and recycling reduced the total Greenhouse Gas emissions from 2,989,467 tonnes/year to 2,959,735 tonnes/year (CO2 Equivalent); representing a total reduction of 1% in emissions. Although composting increases the emissions, however, considering composting and recycling will not only reduce the burden on landfills but will promote agricultural and industrial activates.


2010 ◽  
Vol 148 (5) ◽  
pp. 501-510 ◽  
Author(s):  
T. N. MARASENI ◽  
G. COCKFIELD ◽  
J. MAROULIS

SUMMARYThe majority of cotton produced in Australia is exported. The Australian cotton industry must maintain product quality in order to remain globally competitive. In addition, carbon-conscious consumers need reassurance that the system used to grow the product is environmentally sustainable. The aim of the present study was to estimate greenhouse gas (GHG) emissions due to various farm inputs in three common types of cotton farming systems on the Darling Downs region, southern Queensland. Analysis revealed that GHG emissions for dryland solid-plant and dryland double-skip cotton farming systems are similar, but emissions are much higher for irrigated solid-plant cotton farming (1367, 1274 and 4841 kg CO2e/ha, respectively). However, if comparisons of GHG emissions are based on yield (per tonne), the positions of dryland double-skip farming and dryland solid-plant farming are reversed, but the position of irrigated cotton farming still remains as the highest GHG emitter. If the cotton industry comes under the Australian Government Carbon Pollution Reduction Scheme (CPRS) without any subsidies and preconditions, and with a carbon price of A$25/t CO2e, the costs borne by each system would be A$66.8/t for the irrigated cotton industry, A$39.7/t for the dryland solid-plant cotton industry and A$43.6/t for the dryland double-skip cotton industry. This suggests that irrigated cotton would be more profitable in financial terms but with heavy environmental sustainability costs.


2019 ◽  
Vol 11 (14) ◽  
pp. 3806 ◽  
Author(s):  
Enrico Sicignano ◽  
Giacomo Di Ruocco ◽  
Roberta Melella

The criticality related to the consumption of operational energy and related greenhouse gas (GHG) emissions of existing buildings is clearly decreasing in new buildings due to the strategies tested and applied in recent years in the energy retrofit sector. Recently, studies have been focusing on strategies to reduce environmental impacts related to the entire life cycle of the building organism, with reference to the reduction of embodied energy (and related greenhouse gas emissions) in building materials. As part of EEA’s European EBC project, Annex 57, a wide range of case studies have been promoted with the aim of identifying design strategies that can reduce the embodied energy and related greenhouse gas emissions of buildings. The aim of this paper is to investigate the most common construction systems in the construction industry (concrete, steel, wood) through the analysis of three contemporary architectural works, with the aim of identifying the predisposition for environmental sustainability of each technological system, thus guiding the operators in the sector towards design choices more compatible with the environmental requirements recommended by European legislation.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7703
Author(s):  
Abdul Rehman ◽  
Hengyun Ma ◽  
Magdalena Radulescu ◽  
Crenguta Ileana Sinisi ◽  
Loredana Maria Paunescu ◽  
...  

In this paper we examined the interaction between greenhouse gas emissions, nuclear energy, coal energy, urban agglomeration, and economic growth in Pakistan by utilizing time series data during 1972–2019. The stationarity of the variables was tested through unit root tests, while the ARDL (autoregressive distributed lag) method with long and short-run estimations was applied to reveal the linkages between variables. A unidirectional association between all variables was revealed by performing a Granger causality test under the vector error correction model (VECM) that was extracted during the short-run estimate. Furthermore, the stepwise least squares technique was also utilized to check the robustness of the variables. The findings of long-run estimations showed that GHG emissions, coal energy, and urban agglomeration have an adversative association with economic growth in Pakistan, while nuclear energy showed a dynamic association with the economic growth. The outcomes of short-run estimations also show that nuclear energy has a constructive association with economic growth, while the remaining variables exposed an adversative linkage to economic growth in Pakistan. Similarly, the Granger causality test under the vector error correction model (VECM) outcomes exposes that all variables have unidirectional association. Furthermore, the outcomes of the stepwise least squares technique reveals that GHG emissions and coal energy have an adverse association with economic growth, and variables nuclear energy and urban agglomeration have a productive linkage to the economic growth in Pakistan. GHG emissions are no doubt an emerging issue globally; therefore, conservative policies and financial support are needed to tackle this issue. Despite the fact that Pakistan contributes less to greenhouse gas emissions than industrialized countries, the government must implement new policies to address this problem in order to contribute to environmental sustainability while also enhancing economic development.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-9
Author(s):  
Nuryanto S. Slamet ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Land reclamation activities can, directly and indirectly, impact the environment. Examples of direct effects include alterations in coastal geomorphology, variations in the chemical content of water and changes in biological composition along the littoral zone. The indirect impacts can involve geological changes and increase vulnerability to natural disasters. Reclamation processes also result in greenhouse gas (GHG) emissions from vehicle and machinery fuel use and through the release of carbon stored in vegetation, soils and sediment in mangroves and seagrass ecosystems. Considering the global extent of land reclamation, the scale of these emissions is likely to be of widespread interest. The case of Jakarta Bay provides useful insights that can contribute to the improved environmental management of kindred land development projects in Indonesia and other parts of Asia. More than 5,100 ha of new land mass is planned from the Jakarta Bay reclamation. Preliminary analysis suggests that 30% of the planned area will require more than 150.7 million cubic metres of sand sourced from 8,628 ha of marine quarry area. In this study, we examine the sources of GHG emissions in these activities and the potential opportunities available to reduce them. The audience for this paper includes policymakers, environmental practitioners, city developers and postgraduate scholars dealing with land reclamation or other major infrastructure developments.


Author(s):  
Rajkamal Kesharwani ◽  
Md Monirul Islam ◽  
Xiaoxu Song ◽  
Zeyi Sun ◽  
Meng Zhang ◽  
...  

Cellulosic biofuel manufacturing consists of two major processes, biomass feedstock preprocessing and bioconversion. Traditionally, these two processes are conducted in different locations in practice and transportation is required to connect the two processes. Pelleting in preprocessing can help reduce the size and increase the density of biomass so that the transportation and handling can be more efficient. However, pelleting is also considered an energy-intensive process that consumes a large amount of energy, which leads to considerable greenhouse gas emissions. Due to such an environmental and energy related concern, the use of pelleting process in real industry is still in doubt regarding its performance of environmental sustainability although it has been extensively studied in laboratory scale. In this paper, we analyze both positive and negative impacts of pelleting in biofuel manufacturing regarding GHG emissions. A numerical case study focusing on the transportation is conducted to examine such impacts through the comparison between the scenarios with and without pelleting process to estimate the net emission due to the pelleting process.


Sign in / Sign up

Export Citation Format

Share Document