Sources of Greenhouse Gas Emissions from Land Reclamation Development in Indonesia

2018 ◽  
Vol 2 (1) ◽  
pp. 1-9
Author(s):  
Nuryanto S. Slamet ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Land reclamation activities can, directly and indirectly, impact the environment. Examples of direct effects include alterations in coastal geomorphology, variations in the chemical content of water and changes in biological composition along the littoral zone. The indirect impacts can involve geological changes and increase vulnerability to natural disasters. Reclamation processes also result in greenhouse gas (GHG) emissions from vehicle and machinery fuel use and through the release of carbon stored in vegetation, soils and sediment in mangroves and seagrass ecosystems. Considering the global extent of land reclamation, the scale of these emissions is likely to be of widespread interest. The case of Jakarta Bay provides useful insights that can contribute to the improved environmental management of kindred land development projects in Indonesia and other parts of Asia. More than 5,100 ha of new land mass is planned from the Jakarta Bay reclamation. Preliminary analysis suggests that 30% of the planned area will require more than 150.7 million cubic metres of sand sourced from 8,628 ha of marine quarry area. In this study, we examine the sources of GHG emissions in these activities and the potential opportunities available to reduce them. The audience for this paper includes policymakers, environmental practitioners, city developers and postgraduate scholars dealing with land reclamation or other major infrastructure developments.

10.29007/lx7q ◽  
2018 ◽  
Author(s):  
Jan C. T. Bieser ◽  
Lorenz M. Hilty

The digital transformation has direct and indirect effects on greenhouse gas (GHG) emissions. Direct effects are caused by the production, use and disposal of information and communication technology (ICT) hardware. Indirect effects include the changes to patterns of production and consumption in other domains. Studies quantifying both effects often conclude that net effects (indirect minus direct effects) can lead to a significant GHG emission reduction. We revisited a study by Accenture on ICT’s GHG abatement potential in Switzerland by reassessing the main assumptions. Our results confirm that ICT has the potential to reduce GHG emissions in Switzerland, especially in the building, transport and energy domains. However, our results also suggest that the potential is smaller than anticipated and that exploiting this potential requires targeted action. Reasons for differences among these results (and the results of similar other studies) are: degrees of freedom in the assessment methodology, selection of ICT use cases, allocation of impacts to ICT, definition of the baseline, estimation of the environmental impact, prediction of the future adoption of use cases, estimation of rebound effects, interaction among use cases, and extrapolation from use case to society- wide impacts. We suggest addressing these methodological challenges to improve comparability of results.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tokuta Yokohata ◽  
Kazuyuki Saito ◽  
Akihiko Ito ◽  
Hiroshi Ohno ◽  
Katsumasa Tanaka ◽  
...  

Abstract The Yedoma layer, a permafrost layer containing a massive amount of underground ice in the Arctic regions, is reported to be rapidly thawing. In this study, we develop the Permafrost Degradation and Greenhouse gasses Emission Model (PDGEM), which describes the thawing of the Arctic permafrost including the Yedoma layer due to climate change and the greenhouse gas (GHG) emissions. The PDGEM includes the processes by which high-concentration GHGs (CO2 and CH4) contained in the pores of the Yedoma layer are released directly by dynamic degradation, as well as the processes by which GHGs are released by the decomposition of organic matter in the Yedoma layer and other permafrost. Our model simulations show that the total GHG emissions from permafrost degradation in the RCP8.5 scenario was estimated to be 31-63 PgC for CO2 and 1261-2821 TgCH4 for CH4 (68th percentile of the perturbed model simulations, corresponding to a global average surface air temperature change of 0.05–0.11 °C), and 14-28 PgC for CO2 and 618-1341 TgCH4 for CH4 (0.03–0.07 °C) in the RCP2.6 scenario. GHG emissions resulting from the dynamic degradation of the Yedoma layer were estimated to be less than 1% of the total emissions from the permafrost in both scenarios, possibly because of the small area ratio of the Yedoma layer. An advantage of PDGEM is that geographical distributions of GHG emissions can be estimated by combining a state-of-the-art land surface model featuring detailed physical processes with a GHG release model using a simple scheme, enabling us to consider a broad range of uncertainty regarding model parameters. In regions with large GHG emissions due to permafrost thawing, it may be possible to help reduce GHG emissions by taking measures such as restraining land development.


Author(s):  
Subhankar Das

A green building is a sustainable building that has minimal impacts on the environment throughout its life. For the purposes of this report, “green building” is understood to mean construction that makes efficient use of energy and resources in every aspect. This includes the production of building materials, and the design, use, and eventual demolition of a building in any sector (commercial, residential, industrial, public buildings) and at all stages, from new buildings to “retrofitting” or adapting existing ones. The construction sector, which accounts for 10% of global GDP, has direct and indirect impacts on the environment. It produces 23% of global greenhouse gas (GHG) emissions, and buildings are responsible for between 30% and 40% of all material flows. A green building is a sustainable building that has minimal impacts on the environment throughout its life.


2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


Author(s):  
Dandan Liu ◽  
Dewei Yang ◽  
Anmin Huang

China has grown into the world’s largest tourist source market and its huge tourism activities and resulting greenhouse gas (GHG) emissions are particularly becoming a concern in the context of global climate warming. To depict the trajectory of carbon emissions, a long-range energy alternatives planning system (LEAP)-Tourist model, consisting of two scenarios and four sub-scenarios, was established for observing and predicting tourism greenhouse gas peaks in China from 2017 to 2040. The results indicate that GHG emissions will peak at 1048.01 million-ton CO2 equivalent (Mt CO2e) in 2033 under the integrated (INT) scenario. Compared with the business as usual (BAU) scenario, INT will save energy by 24.21% in 2040 and reduce energy intensity from 0.4979 tons of CO2 equivalent/104 yuan (TCO2e/104 yuan) to 0.3761 Tce/104 yuan. Although the INT scenario has achieved promising effects of energy saving and carbon reduction, the peak year 2033 in the tourist industry is still later than China’s expected peak year of 2030. This is due to the growth potential and moderate carbon control measures in the tourist industry. Thus, in order to keep the tourist industry in synchronization with China’s peak goals, more stringent measures are needed, e.g., the promotion of clean fuel shuttle buses, the encouragement of low carbon tours, the cancelation of disposable toiletries and the recycling of garbage resources. The results of this simulation study will help set GHG emission peak targets in the tourist industry and formulate a low carbon roadmap to guide carbon reduction actions in the field of GHG emissions with greater certainty.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Sign in / Sign up

Export Citation Format

Share Document