scholarly journals Hybrid Large Eddy Simulations of an Uncooled High Pressure Turbine Stator-Rotor Stage

2017 ◽  
Author(s):  
James Kopriva ◽  
Gregory Laskowski

2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Dimitrios Papadogiannis ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Gaofeng Wang ◽  
Stéphane Moreau

This study focuses on the engine-representative MT1 transonic high-pressure turbine. Simulated by use of wall-modeled large-eddy simulations (LES) with three different subgrid scale (SGS) closures, mean pressure profiles across the blades as well as mean radial profiles at the rotor exit are found to be in good agreement with experimental data with only local differences between models. Unsteady flow features, inherently present in LES, are however affected by SGS modeling. This is evidenced by the relative energetic content of the deterministic to stochastic turbulent contributions evaluated, thanks to the triple decomposition analysis of the simulations. Origins of such differences are found to impact the entire radial distribution of the flow and activity, with deterministic and chaotic contributions distributed differently depending on the SGS model and reference frequency used to extract the deterministic signal. Such flow responses can be attributed to the different SGS capacities to satisfy basic turbulent flow features that translate in different dissipative and turbulent diffusive contributions of the three SGS models.



Author(s):  
Martin Thomas ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Charlie Koupper

The next generation of lean combustion engines promises to further decrease environmental impact and cost of air traffic. Compared to the currently employed Rich Quench Lean (RQL) concept, the flow field at the exit of a lean combustion chamber is characterized by stronger variations of velocity as well as temperature and higher levels of turbulence. These specific features may have a substantial impact on the aerothermal performance of the high-pressure turbine and thereby on the efficiency of the entire engine. Indeed, high levels of turbulence in the Nozzle Guide Vane (NGV) passages locally impact the heat flux and result in globally over dimensioned cooling systems of the NGV. In this study, Large Eddy Simulations (LES) are performed on an engine representative lean combustion simulator geometry to investigate the evolution of turbulence and the migration of hot streaks through the high-pressure turbine. To investigate the impact of non-uniform stator inlet conditions on the estimated thermal stress on the NGVs, adiabatic LES predictions of the lean combustor NGV FACTOR configuration are analyzed through the use of high statistical moments of temperature and two point statistics for the assessment of turbulent quantities. Relations between temperature statistical features and turbulence are evidenced on planes through the NGV passage pointing to the role of mixing and large scale features along with marked wall temperatures that locally can largely differ from obtained mean values.





Author(s):  
Martin Thomas ◽  
Jerome Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Charlie Koupper

Abstract Development goals for next generation aircraft engines are mainly determined by the need to reduce fuel consumption and environmental impact. To reduce NOx emissions lean combustion technologies will be applied in future development projects. The more compact design and the absence of dilution holes in this type of engines shortens residence times in the combustion chamber and reduces mixing which results in higher levels of swirl, turbulence and temperature distortions at the exit of the combustion chamber. For these engines interactions between components are more important, so that the traditional engine design approach of component-wise optimization will have to be adapted. To study new lean burn architectures the European FACTOR project investigates the transport of hot streaks produced by a non-reactive combustor simulator through a single stage high-pressure turbine. In this work high-fidelity Large Eddy Simulation (LES) of combustor and complete high-pressure turbine are discussed and validated against experimental data. Measurement data is available on P40 (exit of the combustion chamber), P41 (exit of the stator) and P42 (exit of the rotor) and generally shows a good agreement to LES data.





Author(s):  
Qingjun Zhao ◽  
Jianyi Du ◽  
Huishe Wang ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

In this paper, three-dimensional multiblade row unsteady Navier-Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in high pressure stage of a Vaneless Counter-Rotating Turbine. The hot streak is circular in shape with a diameter equal to 25% of the high pressure turbine stator span. The hot streak center is located at 50% of the span and the leading edge of the high pressure turbine stator. The tip clearance size studied in this paper is 2.0mm (2.594% high pressure turbine rotor height). The numerical results indicate that the hot streak mixes with the high pressure turbine stator wake and convects towards the high pressure turbine rotor blade surface. Most of hotter fluid migrates to the pressure surface of the high pressure turbine rotor. Only a few of hotter fluid rounds the leading edge of the high pressure turbine rotor and migrates to the suction surface. The migration characteristics of the hot streak in the high pressure turbine rotor are dominated by the combined effects of secondary flow, buoyancy and leakage flow in the rotor tip clearance. The leakage flow trends to drive the hotter fluid towards the blade tip on the pressure surface and to the hub on the suction surface. Under the effect of the leakage flow, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the high pressure turbine rotor is intensified due to the effects of the leakage flow. And the results indicate that the leakage flow effects trend to increase the low pressure turbine rotor inlet temperature at the tip region. The air flow with higher temperature at the tip region of the low pressure turbine rotor inlet will affect the flow and heat transfer characteristics in the downstream low pressure turbine.



Author(s):  
Christoph Traxinger ◽  
Julian Zips ◽  
Christian Stemmer ◽  
Michael Pfitzner

Abstract The design and development of future rocket engines severely relies on accurate, efficient and robust numerical tools. Large-Eddy Simulation in combination with high-fidelity thermodynamics and combustion models is a promising candidate for the accurate prediction of the flow field and the investigation and understanding of the on-going processes during mixing and combustion. In the present work, a numerical framework is presented capable of predicting real-gas behavior and nonadiabatic combustion under conditions typically encountered in liquid rocket engines. Results of Large-Eddy Simulations are compared to experimental investigations. Overall, a good agreement is found making the introduced numerical tool suitable for the high-fidelity investigation of high-pressure mixing and combustion.



Author(s):  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Nicolas Odier ◽  
Kevin Leroy ◽  
...  

Abstract This paper aims at addressing design issues of turbomachinery configurations by use of Large-Eddy Simulation (LES). To do so, a research state-of-the-art high-pressure turbine stage, without technological details and for which experimental data are available, is computed with the three methods: i.e. RANS, URANS and LES. Starting from the nominal operating design, a database is acquired varying the design space (three Zweifel numbers), load (three pressure rates) and rotation speed (three reduced speeds). The analysis of the database is carried out incrementally from a design perspective. Numerical results are systematically compared to experimental ones. Main conclusions are threefold: 1/ Calibrated RANS provides excellent results at the nominal operating point but lacks of accuracy at off design conditions. Only unsteady methods (both URANS and LES) allow a good agreement with experiment along the whole database. 2/ Although very good on the overall performances, LES provides radial profiles and 2D maps leaving room for improvement in comparison with the URANS predictions. 3/ LES and standard law-of-the-wall is validated against experiments in a high-pressure turbine without technological details but still representative of a realistic and recent industrial design. From an aero design point, this paper shows the interest in using URANS for off design conditions. It also represents a milestone for LES that had to be passed before addressing more complex issues which URANS hardly addresses.



Sign in / Sign up

Export Citation Format

Share Document