scholarly journals FEATURES OF COMPOSITE REINFORCEMENT APPLICATION IN FOUNDATIONS OF LOW-RISE BUILDINGS

2019 ◽  
Vol 7 (3) ◽  
pp. 50-54
Author(s):  
Marina Shutova ◽  
Anatoliy Subbotin ◽  
Anna Shagina

The article identifies the features of the use of composite reinforcement in the pile and strip foundation of a two-story house. When designing the foundations, the complex geological conditions of the construction site were taken into account: a high level of groundwater, their aggressiveness with respect to metal reinforcement (seasonal fluctuation of water supply and water treatment at the time of engineering and geological surveys at a level of 2.8 m); the possibility of landslide processes on the slopes; insufficient knowledge and anisotropy of the properties of the bulk layer, significant thickness of the bulk layer, excluding its removal and replacement. An analytical calculation and a numerical experiment were carried out, the following features of the use of composite reinforcement were established: more effective in strip foundations is fiberglass reinforcement, resistant to aggressive influences; ASK is advisable to use only in lightly loaded pile-tape foundations, or with a small pitch of piles due to low rigidity characteristics of ASK. With a significant load on the structures, it is recommended to use combined reinforcement: in areas of pure compression and tension using ASK, and in bending zones - metal reinforcement.

2021 ◽  
Vol 26 (2) ◽  
pp. 183-193
Author(s):  
Desyta Ulfiana ◽  
Yudi Eko Windarto ◽  
Nurhadi Bashit ◽  
Novia Sari Ristianti

Klaten Regency is one of the regions that has a high level of flood vulnerability. The area of Klaten Regency which is huge and has diverse characteristics makes it difficult to determine an appropriate flood management model. Water Sensitive Urban Design (WSUD) is a model that focuses on handling water management problems with environmentally friendly infrastructure. Therefore, an analysis is carried out to determine the level of flood vulnerability and factors causing flooding to plan a WSUD design that is suitable for each sub-districts of Klaten Regency. The Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods are used to help the analysis. Aspects used as criteria are rainfall, slope, soil type, geological conditions, and land use. Based on the analysis, it could be concluded that Klaten Regency has two sub-districts with high flood hazard category, 21 sub-districts with medium category, and three sub-districts with low category. Bayat and Cawas are sub-districts that have a high level of flood vulnerability category. Meanwhile, Kemalang, Karangnongko and Polanharjo are districts with a low level of flood vulnerability category. The main factors causing flooding in Klaten Regency are slope and land use.


Author(s):  
S. V. Yushchube ◽  
I. I. Podshivalov ◽  
A. S. Larionov

The paper focuses on the pile foundation and footing of the building constructed on a hillside slope and consisting of four three-dimensional blocks. The building is arranged such that to protect the first block constructed on the footslope from the negative technogenic influence of the latter via the embedment of three supporting blocks into the hillside slope. The first three-dimensional block is a three-storey brick building, while the other three are the spatial supporting structures made of insitu reinforced concrete. All the blocks locate at different position levels. The resulting embedded part of the structure matches the class KS-3 construction site safety. It is thus necessary to assess the structural safety of the building constructed in difficult engineering and geological conditions. The MicroFe software is used for finite element dimensional calculations of the pile foundation and footing strength, stability and oscillation after studying the engineering-geological surveys, the analysis of the soil formation, composition and physicalmechanical properties, the piling field. Also, the theoretical model is proposed for the footingfoundation–building system. The obtained results allow assessing the stress-strain state of the pile foundation and footing with the lateral support to the hillside slope of soil.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuesong Tang ◽  
Wenchao Sun ◽  
Xin Zhang ◽  
Pengju Liu

Deep mining has become the normal state of coal mining; compared with the mine with shallow buried depth, the consequent high level of in situ stress and complex distribution have brought severe threats to the stability of the stope and the surrounding rock of the roadway. In this research, taking the 121304 working face of Kouzidong Mine as the engineering background, the characteristics of mining-induced stress distribution under complex in situ stress environment in deep mining are analyzed by using on-site measurement of the original rock stress and mining stress, establishing a theoretical model centered on the middle section of the working face, and establishing large-scale numerical calculation models for different advancing directions. It was found that under deep mining conditions, the maximum stress of the original rock is 25.12 MPa, and the direction is vertical. The advanced influence range of mining stress is about 150 m, and the abutment pressure presents a three-peak distribution characteristic in front of the working face. The research results provide important theoretical guiding value for guiding the mining of coal mines with similar geological conditions.


Author(s):  
Ewoud Verhoef ◽  
Hans Code´e ◽  
Vladan Sˇtefula ◽  
Charles McCombie

Geological disposal is an essential component of the long-term management of spent fuel and high-level radioactive waste. Implementation of a suitable deep repository may, however, be difficult or impossible in some (especially small) countries because of challenging geological conditions or restricted siting options, or because of the high costs involved. For these countries, shared regional or international storage and disposal facilities are a necessity. The European Parliament and the EC have both expressed support for concepts that could lead to regional shared facilities being implemented in the EU. The EC, therefore, funded two projects that form the first two steps of a staged process towards the implementation of shared regional or international storage and disposal facilities. In the period 2003 to 2005, the EC funded SAPIERR I, a project devoted to pilot studies on the feasibility of shared regional storage facilities and geological repositories, for use by European countries. The studies showed that shared regional repositories are feasible, but also that, if they are to be implemented, even some decades ahead, efforts must already be increased now. The first step would be to establish a structured framework for the work on regional repositories. This is the goal of SAPIERR II (2006–2008): to develop possible practical implementation strategies and organisational structures. These will enable a formalised, structured European Development Organisation (EDO) to be established in 2008 or afterwards for working on shared EU radioactive waste storage and disposal activities. The EDO can work in parallel with national waste programmes. Participating EU Member States will be able to use the structures developed as, when and if needed for the furtherance of their individual national policies.


2020 ◽  
Vol 164 ◽  
pp. 01021
Author(s):  
Nadezhda Korvet ◽  
Maria Zavodchikova ◽  
Marina Lazdovskaya

The engineering and geotechnical conditions of the site of the helium plant in the Orenburg region are characterized. The possibility of its technogenic pollution has been identified by the results of literary and stock sources, as well as by engineering and geological surveys. The reason for the formation of pollution sites is substantiated. This fact is confirmed by analyzes of assessing the composition of groundwater and the physicomechanical properties of loess soils that make up the upper part of the geological section. Groundwater is characterized by increased mineralization, which is mainly caused by the high content of sulfates, chlorides, magnesium and calcium. Also, there is an increased content of ammonia, the smell of gasoline. Studies of the soil properties showed that it almost lost subsidence properties, with the exception of isolated cases. The subsidence of individual soil samples taken from a depth of 13.0-20.0 m is inexplicable by natural causes due to the impossibility of steeping them, taking into account the hydrogeological conditions of the site. It indicates an irreversible effect of leaks of chemical reagents on the soil. The established engineering and geological features of soils and their behavior along the depth of the section are confirmed by test results presented in the form of tables and graphs. The presented information is of great practical and scientific importance for predicting changes in the characteristics of the geological environment during technogenic pollution at oil and gas facilities. The feasibility of amending regulatory documents for a detailed study of this problem in accordance with existing recommendations and scientific developments is proposed.


2021 ◽  
Vol 1 ◽  
pp. 39-40
Author(s):  
Eva-Maria Hoyer ◽  
Paulina Müller ◽  
Phillip Kreye ◽  
Christoph Behrens ◽  
Marc Wengler ◽  
...  

Abstract. The Federal Company for Radioactive Waste Disposal (BGE) is the German waste management organisation responsible for implementing the search for a site with the best possible safety for the disposal of high-level radioactive waste for at least 1 million years, following the amendments of the Repository Site Selection Act in 2017. The selection procedure is meant to be a participatory, transparent, learning and self-questioning process based on scientific expertise. It consists of three phases with an increasing level of detail. The first step of the first phase of the site selection procedure was completed in September 2020 and resulted in the identification of 90 subareas that give reason to expect favourable geological conditions for the safe disposal. The potentially suitable subareas cover approximately 54 % of Germany and are located in three different host rocks: rock salt (halite), claystone and crystalline rock. The second step of phase one is currently in progress and includes the so-called representative preliminary safety analyses that aim to assess the extent to which the safe containment of the radioactive waste can be expected. Representative preliminary safety analyses are one of the foundations for deciding whether an area will be considered for surface-based exploration in the next phase of the site selection procedure. Within the preliminary safety analyses, the behaviour of the disposal system is analysed in its entirety, across all operational phases of the repository and under consideration of possible future evolution of the disposal system with respect to the safe containment of the radioactive waste. The development of a database is described, which aims to systematically document and provide the framework needed for the analyses of the disposal systems in the subareas regarding the safe containment of the radionuclides over the assessment period of 1 million years. This database includes the vast amount of information about the different components of the disposal system. This includes also the geological setting, the technical conception of the repository and compilations of values for the physical, geoscientific, and technical parameters characterising the various barriers of the disposal system. Furthermore, a self-contained derivation of expected and deviating future evolution of the disposal system and its geological setting is included; following the so-called features, events and processes (FEP) strategy.


Author(s):  
Erni Suharini ◽  
◽  
Fakhfiyani Arfina ◽  
Edi Kurniawan

Banjarnegara is one of the regions in Central Java which is very vulnerable to landslide disaster. This condition is motivated by the geological conditions and the metoerological conditions of Banjarnegara Regency that contributed to the high potential for landslides. One area in Banjarnegara Regency which is prone to landslides is Karangkobar Sub-District. From 2018, there have been 23 landslides in Karangkobar Sub-District, out of a total of 152 landslides that occurred in Banjarnegara. This study intended to determine the level of landslide threats in Karangkobar Sub-District and the level of community capacity in dealing with landslide threats in Karangkobar Sub-District. The method used in the study is scoring, geographic information systems, descriptive, Gutman scale, and comparative descriptive. Parameters used to determine the threat of landslides are rainfall, slope, soil type, land use, soil texture, soil drainage, and soil depth. While the parameters for the level of capacity are the rules and institutions for disaster management, early warning and disaster risk assessment, disaster education, reduction of basic risk factors, and preparedness development for all lines. Based on to the result, we know that the level of landslides in Karangkobar Sub-District consists of low landslide threat level that covers only 1% of the Karangkobar area, moderate landslide threat that covers 74% of the Karangkobar area, and High level of landslide threat that covers 25% of the entire Karangkobar area. Based on the research result shows that most of the Karangkobar Sub-District area still has a low capacity in dealing with disasters. The low capacity of the community in Karangkobar Sub-District will be a serious problem because of the large threat of landslides in the area. For this reason, disaster mitigation efforts are needed in the Karangkobar Sub-District community.


2018 ◽  
Vol 45 (3) ◽  
pp. 433
Author(s):  
Marisol Lara ◽  
Sergio A. Sepúlveda ◽  
Constanza Celis ◽  
Sofía Rebolledo ◽  
Pablo Ceballos

The urban expansion of Santiago city includes areas with geomorphological and geological conditions with potential to be affected by landslide processes. This work presents compiled landslide susceptibility maps for the Andean foothills of Santiago city, between Maipo and Mapocho rivers. The maps identify the areas prone to the generation of slides, falls and flows. The results show that the oriental foothills of Santiago city have moderate to high susceptibility of rock falls, rock and soil slides and debris flows. The most important of these landslide types are debris flows, due to the runout of this processes that may reach urban areas posing a risk for the city, for which detailed hazard studies are required.


2021 ◽  
Vol 56 ◽  
pp. 67-75
Author(s):  
Eva-Maria Hoyer ◽  
Elco Luijendijk ◽  
Paulina Müller ◽  
Phillip Kreye ◽  
Florian Panitz ◽  
...  

Abstract. The Federal Company for Radioactive Waste Disposal (BGE) is responsible for the search for a site with the best possible safety for the disposal of high-level radioactive waste in Germany. The site selection procedure is regulated in a law that was adopted by the German Federal Parliament (Repository Site Selection Act – StandAG, 2017, last updated 2020) and aims to be a participatory, transparent, learning, and self-questioning process based on scientific expertise. The first step of the first phase of the site selection procedure was completed in September 2020 and resulted in the identification of sub-areas that give reason to expect favorable geological conditions for the long-term storage of nuclear waste in the subsurface. These sub-areas cover approximately 54 % of Germany and are located in three different host rocks: rock salt – halite, claystone, and crystalline rock. The challenge for the next step is to find suitable siting regions within the previously determined sub-areas that are then considered further in the next phase of the site selection procedure. In the following, the methodology of the so-called representative preliminary safety analyses is described, which constitute one of the tools to identify siting regions, and some first insight on how they are planned to be implemented in practice is given.


Author(s):  
Yudi Kuswandi ◽  
Jossi Erwindi ◽  
Moh. Sapari Dwi Hadian ◽  
Dicky Muslim

Potential natural hazards in Palu City by paying attention to the real physical characteristics of Palu City are categorized as having a high level of disaster hazard. The geological character of both the geological structure and geological engineering in the Palu region shows the great potential for geological disaster hazards. On September 28, 2018, at 18: 02 CIT, an earthquake measuring 7.4 on the Richter scale, the quake's center located in 26 km of Donggala district and 80 km northwest of Palu City. By observing the epicenter's location and the depth of the hypo-central earthquake, it appears that this shallow earthquake occurred due to activity in the Palu Koro fault zone. This fault is the most active in Sulawesi and is the most active in Indonesia with a movement of 7 cm per year. Liquidity disasters or ground liquefaction are also the effects of an earthquake. Shocks a massive quake causes the soil to melt this thing occurs when the saturated soil loses strength and stiffness due to stress. The Petobo area and the Balaroa - Perumnas are close to the Palu Koro active fault line and the land in the area is composed of soft material from the sedimentation process. This area is shallow groundwater with high soil permeability values, namely in the Petobo area and Perumnas - Balaroa. The purpose of this study is to analyze the potential liquefaction disaster in Palu City and analyze the Palu City resident ability against Liquefaction Hazard Prone. This research uses a descriptive qualitative analysis method. Potential liquefaction disasters were analyzing qualitatively based on geological conditions and disaster locations. Disaster mitigation capabilities were analyzed qualitatively based on the Palu City Spatial Pattern. One of the hazards caused by an earthquake that has the potential to be a disaster in Palu City is liquefaction. The ability of residents to mitigate liquefaction in Palu City is influenced by local wisdom which is reflected in ancient times when people lived in the highlands or hills. the concept of building structures, land use, and spatial planning patterns in Palu City which can reduce the threat of liquefaction.


Sign in / Sign up

Export Citation Format

Share Document