scholarly journals Activating cement mixing water with the relaxation processes

2020 ◽  
Vol 8 (4) ◽  
pp. 43-48
Author(s):  
Andrei Pavlov ◽  
Yurii Gol'tsov ◽  
Levon Mailyan ◽  
Evgeniy Shcherban' ◽  
Sergey Stel'makh ◽  
...  

The analysis of relaxation processes in water activated by thermal or ultraviolet radiation has been carried out. The activation of the mixing water leads to an earlier hardening of the cement. At the same time, activated water loses its properties with a relaxation time, which is equal to the activity time of melt water, which is explained by the common reasons for the origin of the increased reaction properties of activated water and melt water. These properties are due to the fact that activation increases the content of free water molecules. In the normal state, some of the water molecules enter the voids of fractal-clathrate structures. During thermal or radiation activation processes, characterized by certain relaxation times, these structures are destroyed, and free water molecules are released. But after the termination of activation, relaxation processes take place to restore thermodynamically equilibrium fractal-clathrate structures, and part of the free water is again captured by these structures. Therefore, the reactivity of water after the termination of activation decreases.

Vibrations of sulphur dioxide show two separate relaxation times. Values of r 1 = 6.0 × 10 -8 s for the vibrations of 519 cm -1 and r 2 = 1.2 × 10 -6 s for the vibrations of 1151 and 1361 cm -1 have been derived from new ultrasonic measurements, in fair agreement with earlier work. Molecules studied as possible vibration-translation catalysts included ethane, ethylene, water, and n -hexane. No enhanced efficiency of energy transfer was observed with ethylene. Ethane and water molecules were found to be only moderately efficient catalysts; proportionally, they exert a greater effect for processes associated with r 1 . Deuterium oxide is found to be somewhat more efficient than water. n -Hexane is highly efficient for both the r 1 and r 2 relaxation processes of sulphur dioxide. These observations are discussed in relation to various mechanisms for the catalysis of energy transfer.


1975 ◽  
Vol 30 (10) ◽  
pp. 1330-1332 ◽  
Author(s):  
E. K.-H. Wittich ◽  
J. Voitländer ◽  
G. Lagaly

Abstract The transversal relaxation times of the OH-protons of a crystalline silicic acid were measured. Two relaxation processes, clearly separated from each other, are related to the OH-protons in the silicate layers and to the OH-protons of water molecules in the interlayer spaces. From the initial magnetizations information is obtained about the water content in the interlayer space which does well agree with results given in thermal decomposition curves.


1980 ◽  
Vol 45 (6) ◽  
pp. 1639-1645 ◽  
Author(s):  
Jindřich Novák ◽  
Ivo Sláma

The dependence of the equivalent conductivity on the temperature and composition of the Ca(NO3)2-CaI2-H2O system was studied. The ionic fraction [I-]/([I-] + [NO-3]) was changed from 0.1 to 0.5, the mole fraction of calcium salts (assumed in anhydrous form in the presence of free water molecules) was 0.075-0.200. The equivalent conductivity was found to be a linear function of the ionic fraction at constant temperature and salt concentration.


1977 ◽  
Vol 55 (4) ◽  
pp. 297-301 ◽  
Author(s):  
M. P. Madan

The dielectric relaxation processes of acetone, cyclohexanone, 4-methyl-2-pentanone, and 4-heptanone in dilute nonpolar solvents, n-heptane, cyclohexane, benzene, and carbon tetrachloride have been studied in the microwave region over a temperature range 10 to 60 °C. The relaxation times and the thermodynamic parameters for the activated states have been determined using the measured dielectric data. The results have been discussed in terms of dipole reorientation by molecular and intramolecular rotation and compared, wherever possible, with other similar studies on aliphatic molecules.


1980 ◽  
Vol 58 (1) ◽  
pp. 20-24 ◽  
Author(s):  
M. P. Madan

The dielectric absorption of quinoline, isoquinoline, and their binary mixtures has been studied in the microwave region over a range of temperatures in dilute benzene and n-heptane solutions. The relaxation times and the thermodynamic parameters for the activated state have been determined using the measured dielectric data. The results obtained have been discussed in terms of the molecular motion of the system. A relation has been proposed to represent the relaxation behavior of a system of two Debye-type polar components in a non-polar solvent. The relation has been tested by comparing the calculated values with those determined experimentally for a few systems consisting of similar, simple rigid polar molecules.


1952 ◽  
Vol 25 (4) ◽  
pp. 720-729 ◽  
Author(s):  
John D. Ferry ◽  
Edwin R. Fitzgerald ◽  
Lester D. Grandine ◽  
Malcolm L. Williams

Abstract By the use of reduced variables, the temperature dependence and frequency dependence of dynamic mechanical properties of rubberlike materials can be interrelated without any arbitrary assumptions about the functional form of either The definitions of the reduced variables are based on some simple assumptions regarding the nature of relaxation processes. The real part of the reduced dynamic rigidity, plotted against the reduced frequency, gives a single composite curve for data over wide ranges of frequency and temperature; this is true also for the imaginary part of the rigidity or the dynamic viscosity. The real and imaginary parts of the rigidity, although independent measurements, are interrelated through the distribution function of relaxation times, and this relation provides a check on experimental results. First and second approximation methods of calculating the distribution function from dynamic data are given. The use of the distribution function to predict various types of time-dependent mechanical behavior is illustrated.


1954 ◽  
Vol 27 (1) ◽  
pp. 36-54 ◽  
Author(s):  
W. Kuhn ◽  
O. Künzle ◽  
A. Preissmann

Abstract By rapid deformation of a medium in which linear molecules are present, various changes are produced simultaneously in the latter. These changes are more or less independent of one another, and can release independently and totally or partially by rearrangement of valence distances and valence angles in the chain molecules. By virtue of such relaxation processes, a portion of the stress originating in the rapid deformation disappears, with a changing time requirement for the various portions. A relaxation time spectrum is thus formed. The relaxation time spectrum consists of a finite number of restoring force mechanisms with proper relaxation times or of a continuous spectrum. Both the creep curves (the dependence of the length of a body on time at constant load), and stress relaxation (decay of the stress observed in test sample kept at constant length after rapid deformation), as well as the total visco-elastic behavior, especially the behavior at constant periodic deformation of the test sample, are determined by the relaxation time spectrum. The appropriate Quantitative relationships were derived.


2019 ◽  
Author(s):  
Peter Evans ◽  
Daniel Reta ◽  
George F. S. Whitehead ◽  
Nicholas Chilton ◽  
David Mills

Single-molecule magnets (SMMs) have potential applications in high-density data storage, but magnetic relaxation times at elevated temperatures must be increased to make them practically useful. <i>Bis</i>-cyclopentadienyl lanthanide sandwich complexes have emerged as the leading candidates for SMMs that show magnetic memory at liquid nitrogen temperatures, but the relaxation mechanisms mediated by aromatic C<sub>5</sub> rings have not been fully established. Here we synthesise a <i>bis</i>-monophospholyl dysprosium SMM [Dy(Dtp)<sub>2</sub>][Al{OC(CF<sub>3</sub>)<sub>3</sub>}<sub>4</sub>] (<b>1</b>, Dtp = {P(C<sup>t</sup>BuCMe)<sub>2</sub>}) by the treatment of <i>in situ</i>-prepared “[Dy(Dtp)<sub>2</sub>(C<sub>3</sub>H<sub>5</sub>)]” with [HNEt<sub>3</sub>][Al{OC(CF<sub>3</sub>)<sub>3</sub>}<sub>4</sub>]. SQUID magnetometry reveals that <b>1</b> has an effective barrier to magnetisation reversal of 1,760 K (1,223 cm<sup>–1</sup>) and magnetic hysteresis up to 48 K. <i>Ab initio</i> calculation of the spin dynamics reveal that transitions out of the ground state are slower in <b>1</b> than in the first reported dysprosocenium SMM, [Dy(Cp<sup>ttt</sup>)<sub>2</sub>][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] (Cp<sup>ttt</sup> = C<sub>5</sub>H<sub>2</sub><sup>t</sup>Bu<sub>3</sub>-1,2,4), however relaxation is faster in <b>1</b> overall due to the compression of electronic energies and to vibrational modes being brought on-resonance by the chemical and structural changes introduced by the <i>bis</i>-Dtp framework. With the preparation and analysis of <b>1</b> we are thus able to further refine our understanding of relaxation processes operating in <i>bis</i>-C<sub>5</sub>/C<sub>4</sub>P sandwich lanthanide SMMs, which is the necessary first step towards rationally achieving higher magnetic blocking temperatures in these systems in future.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 986
Author(s):  
Rim Boubakri ◽  
Mirosław Szybowicz ◽  
Mariola Sadej ◽  
Sarra Soudani ◽  
Frédéric Lefebvre ◽  
...  

Two new complexes, [Cu(dimpyr)2(H2O)2](NO3)2.2H2O (1) and (Hamdimpy)2[CoCl4].H2O (2), with the monodentate ligand 2-amino-6-methylpyrimidin-4-(1H)-one (dimpyr) and the countercation 4-amino-2,6-dimetylpyrimidium (Hamdimpy), respectively, were prepared and characterized by single crystal X-ray diffraction, elemental analysis and IR spectroscopy. In (1), the Cu(II) cation is tetracoordinated, in a square plan fashion, by two nitrogen atoms from the pyrimidine ring of the organic ligand and two oxygen atoms of two coordinated water molecules. In the atomic arrangement, the CuO2N2 square planes are interconnected via the formation of O-H…O hydrogen bonds involving both coordinated and free water molecules and NO3− nitrate anions to form inorganic layers parallel to the (a, b) plane at z = (2n + 1)/4. In (2), the central atom Co(II) is four-coordinated in a distorted tetrahedral fashion by four Cl− ions. The [CoCl4]2− tetrahedra are arranged parallel to the plane (110) at x = (2n + 1)/2 and the organic cations are grafted between them by establishing with them hydrogen bonds of CH…Cl and NH…Cl types. The vibrational absorption bands were identified by infrared and Raman spectroscopy. Intermolecular interactions were investigated via Hirshfeld surfaces and electronic properties such as HOMO and LUMO energies were derived. The two compounds were characterized by thermal analysis to determine their thermal behavior with respect to temperature.


Sign in / Sign up

Export Citation Format

Share Document