scholarly journals Tofu Wastewater Treatment with the Growth Suspended Microorganism Using Different Air Flowrate

2021 ◽  
Vol 7 (1) ◽  
pp. 01-08
Author(s):  
Rizka Novembrianto ◽  
Restu Hikmah Ayu M ◽  
Firra Rosariawari

Limbah cair tahu dari berbagai industri sebagian besar dibuang ke sungai dan menimbulkan pencemaran. Penelitian ini membahas tentang pengolahan air limbah tahu dengan tujuan untuk menurunkan dan mengontrol kadar pH, BOD, COD, TSS, dan suhu agar tidak mencemari lingkungan saat dibuang ke sungai atau tempat lain yang sesuai dengan reaktor sederhana dalam beberapa hari. Proses pengolahan air menggunakan bakteri dari air limbah sebagai media tampaknya menjanjikan untuk dikembangkan karena memang membutuhkan stater mikroorganisme atau media lain seperti glukosa. Metode yang digunakan dalam penelitian ini adalah penyemaian mikroorganisme, aklimatisasi, dan running dengan proses resirkulasi. Selama proses pertumbuhan mikroorganisme (penyemaian), puncak MLSS diperoleh pada hari ke-6 sebesar 1560 mg/L. Alasan lainnya adalah air limbah dari pengolahan air limbah mereka lebih cocok untuk budidaya mikroorganisme karena limbahnya mengandung nutrisi bermanfaat yang signifikan dan lebih sedikit senyawa beracun dan zat berbahaya yang berinteraksi dengan pertumbuhan mikroorganisme Dalam kondisi yang sama (pH dan Suhu) dalam proses Aklimatisasi dapat mencapai 77,45% setelah 7 hari pengobatan. Setelah waktu detensi (18 jam) hasil bilangan COD juga sangat menurun dengan resirkulasi 5 jam dengan debit udara 8 L/menit dan persentase parameter COD turun 86,51 %. Penelitian ini berjalan dalam skala laboratorium, yang membuat pilot plant ini harus dihitung ulang untuk digunakan dalam aplikasi skala besar. Namun, teknologi ini merupakan proses yang efektif, ekonomis, dan ramah lingkungan untuk pengolahan air limbah tahu. Kata kunci: limbah cair tahu, pertumbuhan mikroorganisme tersuspensi, laju aliran udara

2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


1994 ◽  
Vol 29 (7) ◽  
pp. 229-237 ◽  
Author(s):  
J. Kruit ◽  
F. Boley ◽  
L. J. A. M. Jacobs ◽  
T. W. M. Wouda

Influent characterization and biosorption experiments were carried out with settled influent of seven wastewater treatment plants to study the influence of O2 in the selector in relation to the success of developing good settling properties of the sludge. In previous years working selectors were installed and/or pilot plant research was carried out at these wastewater treatment plants. Characterization of the influent was done with help of standard COD and BOD measurements with help of a coarse filter. The research has elucidated that the presence of O2 in the selector, at initial sludge loadings of 3.5-6.5 kg BOD/kg MLSS.d, is important for producing good settling properties of the sludge when the sum of readily biodegradable COD and rapidly hydrolysable COD is greater than 40%. When the sum of sludge COD and slow hydrolysable COD is greater than 50% an unaerated selector can be used.


1998 ◽  
Vol 151 (1) ◽  
pp. 63-74 ◽  
Author(s):  
S.A. Stern ◽  
B. Krishnakumar ◽  
S.G. Charati ◽  
W.S. Amato ◽  
A.A. Friedman ◽  
...  

2012 ◽  
Vol 66 (8) ◽  
pp. 1684-1690 ◽  
Author(s):  
Russell Yap ◽  
Michael Holmes ◽  
William Peirson ◽  
Michael Whittaker ◽  
Richard Stuetz ◽  
...  

Dissolved air flotation (DAF) incorporating filtration (DAFF) is used at the Bolivar wastewater treatment plant (WWTP) to polish lagoon effluent for reuse. Elevated algal populations are frequently experienced and can lead to increased coagulant requirements and process control issues. Streaming current detectors (SCDs) and a charge demand analyser (CDA) were used to monitor the full-scale plant. This was followed by an optimisation study using a pilot plant with a CDA. It was found that the normal operational charge demand range for DAF at Bolivar was between −46 and −40 μeq L−1. Decreasing the pH of coagulation reduced coagulant consumption and facilitated more sensitive CDA responses to changes in alum dose.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 5-12 ◽  
Author(s):  
E.v. Münch ◽  
K. Barr ◽  
S. Watts ◽  
J. Keller

The Oxley Creek wastewater treatment plant is a conventional 185,000 EP BOD removal activated sludge plant that is to be upgraded for nitrogen removal to protect its receiving water bodies, the Brisbane River and Moreton Bay. Suspended carrier technology is one possible way of upgrading this activated sludge wastewater treatment plant for nitrogen removal. Freely moving plastic media is added to the aeration zone, providing a growth platform for nitrifying bacteria and increasing the effective solids residence time (SRT). This paper presents the results from operating a pilot plant for 7 months at the Oxley Creek WWTP in Brisbane, Australia. Natrix Major 12/12 plastic media, developed by ANOX (Lund, Sweden), was trialed in the pilot plant. The pilot plant was operated with a mixed liquor suspended solids concentration of 1220 mg/L and a total hydraulic residence time of 5.4 hours, similar to the operating conditions in the full-scale Stage 1&2 works at the Oxley Creek WWTP. The plastic carriers were suspended in the last third of the bioreactor volume, which was aerated to a DO setpoint of 4.0 mg/L. The first third of the bioreactor volume was made anoxic and the second third served for carbon removal, being aerated to a DO setpoint of 0.5 mg/L. The results from the pilot plant indicate that an average effluent total inorganic nitrogen concentration (ammonia-N plus NOx−N) of less than 12 mg/L is possible. However, the effluent ammonia concentrations from the pilot plant showed large weekly fluctuations due to the intermittent operation of the sludge dewatering centrifuge returning significant ammonia loads to the plant on three days of the week. Optimising denitrification was carried out by lowering the DO concentration in the influent and in the carbon removal reactor. The results from the pilot plant study show that the Oxley Creek WWTP could be upgraded for nitrogen removal without additional tankage, using suspended carrier technology.


1994 ◽  
Vol 30 (4) ◽  
pp. 181-190 ◽  
Author(s):  
René Dupont ◽  
Ole Sinkjær

The objective of the work presented is to demonstrate how computer based models can be used to improve the effluent quality from wastewater treatment plants by optimisation of the operation. The investigation was carried out in connection with pilot plant investigations at Damhusllen Wastewater Treatment Plant in order to establish the design basis for upgrading the treatment plants in the city of Copenhagen. Calibration of the model was done with thorough characterisation of the wastewater and the activated sludge as the primary calibration tool. Special attention was paid to the nitrification process, which by previous investigations was shown to be occasionally inhibited. Model constants for the nitrification process were detennined from experiments. Default constants were used for nearly all other constants. The pilot plant was optimized with the calibrated model. Different operational strategies for improvement of the denitrification process were tested. The denitrification process was operated relatively poorly at the time for the optimisation. The calibration showed that it was possible to calibrate the model using the characterization of the wastewater and the activated sludge as the primary calibration tool. Further it was shown that the calihrated model could be used as a tool for optimising the operation of the pilot plant. The suggested operation correlated well with the practical realisable operation.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 29-33 ◽  
Author(s):  
A. Duine ◽  
S. Kunst

Over a period of 6 months, pilot plant investigations were carried out with the purpose of bulking sludge control with different aerobic selectors. The wastewater was dominated by industrial dischargers, containing volatile fatty acids up to 450 mg/l. With complete-mix-selectors it was not possible to achieve a stable SVI below 150 ml/g. The bulking sludge could only be controlled with a sectionalized selector (HRT 5–8 minutes per section). The SVI decreased to values below 100 ml/g. Shock-loads and increased VFA-concentrations (by dosing NaC2H3OO) did not cause filamentous growth.


Sign in / Sign up

Export Citation Format

Share Document